Trivalent Glycoprotein Subunit Vaccine Prevents Neonatal Herpes Simplex Virus Mortality and Morbidity
Herpes simplex virus (HSV) can cause severe infection in neonates leading to mortality and lifelong morbidity. Prophylactic approaches, such as maternal immunization, could prevent neonatal HSV (nHSV) infection by providing protective immunity and preventing perinatal transmission. We previously sho...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2020-05, Vol.94 (11) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herpes simplex virus (HSV) can cause severe infection in neonates leading to mortality and lifelong morbidity. Prophylactic approaches, such as maternal immunization, could prevent neonatal HSV (nHSV) infection by providing protective immunity and preventing perinatal transmission. We previously showed that maternal immunization with a replication-defective HSV vaccine candidate,
5-29, leads to transfer of virus-specific antibodies into the neonatal circulation and protects against nHSV neurological sequela and mortality (C. D. Patel, I. M. Backes, S. A. Taylor, Y. Jiang, et al., Sci Transl Med, 11:eaau6039, 2019, https://doi.org/10.1126/scitranslmed.aau6039). In this study, we evaluated the efficacy of maternal immunization with an experimental trivalent (gC2, gD2, and gE2) subunit vaccine to protect against nHSV. Using a murine model of nHSV, we demonstrated that maternal immunization with the trivalent vaccine protected offspring against nHSV-disseminated disease and mortality. In addition, offspring of immunized dams were substantially protected from behavioral pathology following HSV infection. This study supports the idea that maternal immunization is a viable strategy for the prevention of neonatal infections.
Herpes simplex virus is among the most serious infections of newborns. Current antiviral therapies can prevent mortality if infection is recognized early and treated promptly. Most children who survive nHSV develop lifelong neurological and behavioral deficits, despite aggressive antiviral treatment. We propose that maternal immunization could provide protection against HSV for both mother and baby. To this end, we used a trivalent glycoprotein vaccine candidate to demonstrate that offspring are protected from nHSV following maternal immunization. Significantly, this approach protected offspring from long-term behavioral morbidity. Our results emphasize the importance of providing protective immunity to neonates during this window of vulnerability. |
---|---|
ISSN: | 0022-538X 1098-5514 1098-5514 |
DOI: | 10.1128/JVI.02163-19 |