A Deregulated Stress Response Underlies Distinct INF2-Associated Disease Profiles

Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Nephrology 2020-06, Vol.31 (6), p.1296-1313
Hauptverfasser: Bayraktar, Samet, Nehrig, Julian, Menis, Ekaterina, Karli, Kevser, Janning, Annette, Struk, Thaddäus, Halbritter, Jan, Michgehl, Ulf, Krahn, Michael P, Schuberth, Christian E, Pavenstädt, Hermann, Wedlich-Söldner, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response-calcium mediated actin reset, or CaAR-that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot-Marie-Tooth disease that are accompanied by nephropathy, mostly FSGS. We used a combination of quantitative live cell imaging and validation in primary patient cells and nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot-Marie-Tooth disease. We found that mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and nephrocytes. We were able to clearly distinguish between mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot-Marie-Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation. Our results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions.
ISSN:1046-6673
1533-3450
DOI:10.1681/ASN.2019111174