forgeNet: a graph deep neural network model using tree-based ensemble classifiers for feature graph construction
Abstract Motivation A unique challenge in predictive model building for omics data has been the small number of samples (n) versus the large amount of features (p). This ‘n≪p’ property brings difficulties for disease outcome classification using deep learning techniques. Sparse learning by incorpora...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-06, Vol.36 (11), p.3507-3515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
A unique challenge in predictive model building for omics data has been the small number of samples (n) versus the large amount of features (p). This ‘n≪p’ property brings difficulties for disease outcome classification using deep learning techniques. Sparse learning by incorporating known functional relationships between the biological units, such as the graph-embedded deep feedforward network (GEDFN) model, has been a solution to this issue. However, such methods require an existing feature graph, and potential mis-specification of the feature graph can be harmful on classification and feature selection.
Results
To address this limitation and develop a robust classification model without relying on external knowledge, we propose a forest graph-embedded deep feedforward network (forgeNet) model, to integrate the GEDFN architecture with a forest feature graph extractor, so that the feature graph can be learned in a supervised manner and specifically constructed for a given prediction task. To validate the method’s capability, we experimented the forgeNet model with both synthetic and real datasets. The resulting high classification accuracy suggests that the method is a valuable addition to sparse deep learning models for omics data.
Availability and implementation
The method is available at https://github.com/yunchuankong/forgeNet.
Contact
tianwei.yu@emory.edu
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btaa164 |