Redox Coenzyme F420 Biosynthesis in Thermomicrobia Involves Reduction by Stand-Alone Nitroreductase Superfamily Enzymes
Coenzyme F420 is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F420-dependent enzymes are attracting increasing interest as tools in biocatalysis, F420 biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactat...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2020-06, Vol.86 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coenzyme F420 is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F420-dependent enzymes are attracting increasing interest as tools in biocatalysis, F420 biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactate (2-PL) moiety of F420 is formed from free 2-PL, it was recently shown that phosphoenolpyruvate is incorporated in Actinobacteria and that the C-terminal domain of the FbiB protein, a member of the nitroreductase (NTR) superfamily, converts dehydro-F420 into saturated F420. Outside the Actinobacteria, however, the situation is still unclear because FbiB is missing in these organisms and enzymes of the NTR family are highly diversified. Here, we show by heterologous expression and in vitro assays that stand-alone NTR enzymes from Thermomicrobia exhibit dehydro-F420 reductase activity. Metabolome analysis and proteomics studies confirmed the proposed biosynthetic pathway in Thermomicrobium roseum. These results clarify the biosynthetic route of coenzyme F420 in a class of Gram-negative bacteria, redefine functional subgroups of the NTR superfamily, and offer an alternative for large-scale production of F420 in Escherichia coli in the future. |
---|---|
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/AEM.00457-20 |