Measuring Cancer Hallmark Mediation of the TET1 Glioma Survival Effect with Linked Neural-Network Based Mediation Experiments

This paper examines the effect of TET1 expression on survival in glioma patients using open-access data from the Genomic Data Commons. A neural network-based survival model was built on expression data from a selection of genes most affected by TET1 knockdown with a median cross-validated survival c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.8886, Article 8886
Hauptverfasser: Luechtefeld, Thomas, Lin, Nole, Paller, Channing, Kuhns, Katherine, Laterra, John J., Bressler, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the effect of TET1 expression on survival in glioma patients using open-access data from the Genomic Data Commons. A neural network-based survival model was built on expression data from a selection of genes most affected by TET1 knockdown with a median cross-validated survival concordance of 82.5%. A synthetic experiment was then conducted that linked two separately trained neural networks: a multitask model estimating cancer hallmark gene expression from TET1 expression, and a survival neural network. This experiment quantified the mediation of the TET1 survival effect through eight cancer hallmarks: apoptosis, cell cycle, cell death, cell motility, DNA repair, immune response, two phosphorylation pathways, and a randomized gene sets. Immune response, DNA repair, and apoptosis displayed greater mediation than the randomized gene set. Cell motility was inversely associated with only 12.5% mediated concordance. We propose the neural network linkage mediation experiment as an approach to collecting evidence of hazard mediation relationships with prognostic capacity useful for designing interventions.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-65369-3