Field-only surface integral equations: scattering from a perfect electric conductor

A field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that appear in the Stratton-Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of the electric field are obtained directly from surface integral equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2020-02, Vol.37 (2), p.276-283
Hauptverfasser: Sun, Qiang, Klaseboer, Evert, Yuffa, Alex J, Chan, Derek Y C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that appear in the Stratton-Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of the electric field are obtained directly from surface integral equation solutions of three scalar Helmholtz equations for the field components. The divergence-free condition is enforced via a boundary condition on the normal component of the field and its normal derivative. Field values and their normal derivatives at the surface of the PEC are obtained directly from surface integral equations that do not contain divergent kernels. Consequently, high-order elements with fewer degrees of freedom can be used to represent surface features to a higher precision than the traditional planar elements. This theoretical framework is illustrated with numerical examples that provide further physical insight into the role of the surface curvature in scattering problems.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.378665