The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis

Krüppel-like factor 4 (KLF4), a key transcription factor, acts as a multifunctional player involved in the progression of numerous aggressive cancers. The proteasome-dependent pathway is one of the main modalities in controlling KLF4 abundance at a posttranslational level. Although some of the ubiqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2020-06, Vol.27 (6), p.1747-1764
Hauptverfasser: Wang, Xingyun, Xia, Shilin, Li, Hongchang, Wang, Xiang, Li, Chaonan, Chao, Yulin, Zhang, Lingqiang, Han, Chuanchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Krüppel-like factor 4 (KLF4), a key transcription factor, acts as a multifunctional player involved in the progression of numerous aggressive cancers. The proteasome-dependent pathway is one of the main modalities in controlling KLF4 abundance at a posttranslational level. Although some of the ubiquitin ligases have been identified, the deubiquitinases of KLF4 and the regulatory function remain unexplored. Here, by screening ubiquitin-specific proteases that may interact with KLF4, we found ubiquitin-specific peptidase 10 (USP10) as a deubiquitinating enzyme for KLF4. Forced expression of USP10 remarkably increases KLF4 protein level by blocking the latter degradation, whereas the depletion of USP10 promotes KLF4 degradation and thus enhances tumorigenesis. Loss of USP10 in mice downregulates KLF4 expression and accelerates Kras G12D -driven lung adenocarcinoma initiation and progression. In addition, our data revealed that KLF4 can facilitate the transcription of tumor suppressor TIMP3 by directly binding to the TIMP3 promoter. Clinically, reduction of USP10 expression, concomitant with decreased KLF4 and TIMP3 abundance in carcinoma tissue, predicts poor prognosis of lung cancer patient. Taken together, our results demonstrate that USP10 is a critical regulator of KLF4, pinpointing USP10-KLF4-TIMP3 axis as a promising therapeutic target in lung cancer.
ISSN:1350-9047
1476-5403
DOI:10.1038/s41418-019-0458-7