CAVD, towards better characterization of void space for ionic transport analysis
Geometric crystal structure analysis using three-dimensional Voronoi tessellation provides intuitive insights into the ionic transport behavior of metal-ion electrode materials or solid electrolytes by mapping the void space in a framework onto a network. The existing tools typically consider only t...
Gespeichert in:
Veröffentlicht in: | Scientific data 2020-05, Vol.7 (1), p.153-153, Article 153 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geometric crystal structure analysis using three-dimensional Voronoi tessellation provides intuitive insights into the ionic transport behavior of metal-ion electrode materials or solid electrolytes by mapping the void space in a framework onto a network. The existing tools typically consider only the local voids by mapping them with Voronoi polyhedra vertices and then define the mobile ions pathways using the Voronoi edges connecting these vertices. We show that in some structures mobile ions are located on Voronoi polyhedra faces and thus cannot be located by a standard approach. To address this deficiency, we extend the method to include Voronoi faces in the constructed network. This method has been implemented in the CAVD python package. Its effectiveness is demonstrated by 99% recovery rate for the lattice sites of mobile ions in 6,955 Li-, Na-, Mg- and Al-containing ionic compounds extracted from the Inorganic Crystal Structure Database. In addition, various quantitative descriptors of the network can be used to identify and rank the materials and further used in materials databases for machine learning. |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-020-0491-x |