Understanding the dual-task costs of walking: a StartReact study
The need to perform multiple tasks more or less simultaneously is a common occurrence during walking in daily life. Performing tasks simultaneously typically impacts task performance negatively. Hypothetically, such dual-task costs may be explained by a lowered state of preparation due to competitio...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2020-05, Vol.238 (5), p.1359-1364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The need to perform multiple tasks more or less simultaneously is a common occurrence during walking in daily life. Performing tasks simultaneously typically impacts task performance negatively. Hypothetically, such dual-task costs may be explained by a lowered state of preparation due to competition for attentional resources, or alternatively, by a ‘bottleneck’ in response initiation. Here, we investigated both hypotheses by comparing ‘StartReact’ effects during a manual squeezing task under single-task (when seated) and dual-task (when walking) conditions. StartReact is the acceleration of reaction times by a startling stimulation (a startling acoustic stimulus was applied in 25% of trials), attributed to the startling stimulus directly releasing a pre-prepared movement. If dual-task costs are due to a lowered state of preparation, we expected trials both with and without an accompanying startling stimulus to be delayed compared to the single-task condition, whereas we expected only trials without a startling stimulus to be delayed if a bottleneck in response initiation would underlie dual-task costs. Reaction times of the manual squeezing task in the flexor digitorum superficialis and extensor carpi radialis muscle were significantly delayed (approx. 20 ms) when walking compared to the seated position. A startling acoustic stimulus significantly decreased reaction times of the squeezing task (approx. 60 ms) both when walking and sitting. Dual-task costs during walking are, therefore, likely the result of lowered task preparation because of competition for attentional resources. |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-020-05817-8 |