Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models

•A framework for personalization of high-dimensional model parameters.•Generative model to embed Bayesian optimization into a low-dimensional latent space.•VAE-informed acquisition function for active search in Bayesian optimization.•Studies on estimating tissue excitability in cardiac electrophysio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2020-05, Vol.62, p.101670-101670, Article 101670
Hauptverfasser: Dhamala, Jwala, Bajracharya, Pradeep, Arevalo, Hermenegild J., Sapp, John L., Horácek, B. Milan, Wu, Katherine C., Trayanova, Natalia A., Wang, Linwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A framework for personalization of high-dimensional model parameters.•Generative model to embed Bayesian optimization into a low-dimensional latent space.•VAE-informed acquisition function for active search in Bayesian optimization.•Studies on estimating tissue excitability in cardiac electrophysiological model.•Increase in accuracy with a substantial decrease in the computational cost. [Display omitted] The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. Because tissue properties are spatially varying across the underlying geometrical model, it presents a significant challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the geometrical mesh. In this paper, we present a novel concept that uses a generative variational auto-encoder (VAE) to embed HD Bayesian optimization into a low-dimensional (LD) latent space that represents the generative code of HD parameters. We further utilize VAE-encoded knowledge about the generative code to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model in a range of synthetic and real-data experiments, through which we demonstrate its improved accuracy and substantially reduced computational cost in comparison to existing methods that rely on geometry-based reduction of the HD parameter space.
ISSN:1361-8415
1361-8423
DOI:10.1016/j.media.2020.101670