Inactivation of 4‑Oxalocrotonate Tautomerase by 5‑Halo-2-hydroxy-2,4-pentadienoates
5-Halo-2-hydroxy-2,4-pentadienoates (5-halo-HPDs) are reportedly generated in the bacterial catabolism of halogenated aromatic hydrocarbons by the meta-fission pathway. The 5-halo-HPDs, where the halogen can be bromide, chloride, or fluoride, result in the irreversible inactivation of 4-oxalocrotona...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2018-02, Vol.57 (6), p.1012-1021 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 5-Halo-2-hydroxy-2,4-pentadienoates (5-halo-HPDs) are reportedly generated in the bacterial catabolism of halogenated aromatic hydrocarbons by the meta-fission pathway. The 5-halo-HPDs, where the halogen can be bromide, chloride, or fluoride, result in the irreversible inactivation of 4-oxalocrotonate tautomerase (4-OT), which precedes the enzyme that generates them. The loss of activity is due to the covalent modification of the nucleophilic amino-terminal proline. Mass spectral and crystallographic analysis of the modified enzymes indicates that inactivation of 4-OT by 5-chloro- and 5-bromo-2-hydroxy-2,4-pentadienoate follows a mechanism different from that for the inactivation of 4-OT by 5-fluoro-2-hydroxy-2,4-pentadienoate. The 5-chloro and 5-bromo derivatives undergo 4-OT-catalyzed tautomerization to their respective α,β-unsaturated ketones followed by attack at C5 (by the prolyl nitrogen) with concomitant loss of the halide. For the 5-fluoro species, the presence of a small amount of the α,β-unsaturated ketone could result in a Michael addition of the prolyl nitrogen to C4 followed by protonation at C3. The fluoride is not eliminated. These observations suggest that the inactivation of 4-OT by a downstream metabolite could hamper the efficacy of the pathway, which is the first time that such a bottleneck has been reported for the meta-fission pathway. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.7b00899 |