Woody Plant Encroachment has a Larger Impact than Climate Change on Dryland Water Budgets

Woody plant encroachment (WPE) into grasslands is a global phenomenon that is associated with land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains uncertain how the global processes of WPE and climate change may combine to impact water availability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-05, Vol.10 (1), p.8112, Article 8112
Hauptverfasser: Schreiner-McGraw, Adam P., Vivoni, Enrique R., Ajami, Hoori, Sala, Osvaldo E., Throop, Heather L., Peters, Debra P. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Woody plant encroachment (WPE) into grasslands is a global phenomenon that is associated with land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains uncertain how the global processes of WPE and climate change may combine to impact water availability for ecosystems. Using a process-based model constrained by watershed observations, our results suggest that both xerification and climate change augment groundwater recharge by increasing channel transmission losses at the expense of plant available water. Conversion from grasslands to shrublands without creating additional bare soil, however, reduces transmission losses. Model simulations considering both WPE and climate change are used to assess their relative roles in a late 21 st century condition. Results indicate that changes in focused channel recharge are determined primarily by the WPE pathway. As a result, WPE should be given consideration when assessing the vulnerability of groundwater aquifers to climate change.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-65094-x