Massively parallel interrogation and mining of natively paired human TCRαβ repertoires
T cells engineered to express antigen-specific T cell receptors (TCRs) are potent therapies for viral infections and cancer. However, efficient identification of clinical candidate TCRs is complicated by the size and complexity of T cell repertoires and the challenges of working with primary T cells...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2020-05, Vol.38 (5), p.609-619 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | T cells engineered to express antigen-specific T cell receptors (TCRs) are potent therapies for viral infections and cancer. However, efficient identification of clinical candidate TCRs is complicated by the size and complexity of T cell repertoires and the challenges of working with primary T cells. Here we present a high-throughput method to identify TCRs with high functional avidity from diverse human T cell repertoires. The approach used massively parallel microfluidics to generate libraries of natively paired, full-length TCRαβ clones, from millions of primary T cells, which were then expressed in Jurkat cells. The TCRαβ–Jurkat libraries enabled repeated screening and panning for antigen-reactive TCRs using peptide major histocompatibility complex binding and cellular activation. We captured more than 2.9 million natively paired TCRαβ clonotypes from six healthy human donors and identified rare ( |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/s41587-020-0438-y |