Inhibition of ricin A-chain (RTA) catalytic activity by a viral genome-linked protein (VPg)

Ricin is a plant derived protein toxin produced by the castor bean plant (Ricinus communis). The Centers for Disease Control (CDC) classifies ricin as a Category B biological agent. Currently, there is neither an effective vaccine that can be used to protect against ricin exposure nor a therapeutic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Proteins and proteomics 2019-06, Vol.1867 (6), p.645-653
Hauptverfasser: Aitbakieva, Valentina R., Ahmad, Rahimah, Singh, Shaneen, Domashevskiy, Artem V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ricin is a plant derived protein toxin produced by the castor bean plant (Ricinus communis). The Centers for Disease Control (CDC) classifies ricin as a Category B biological agent. Currently, there is neither an effective vaccine that can be used to protect against ricin exposure nor a therapeutic to reverse the effects once exposed. Here we quantitatively characterize interactions between catalytic ricin A-chain (RTA) and a viral genome-linked protein (VPg) from turnip mosaic virus (TuMV). VPg and its N-terminal truncated variant, VPg1–110, bind to RTA and abolish ricin's catalytic depurination of 28S rRNA in vitro and in a cell-free rabbit reticulocyte translational system. RTA and VPg bind in a 1 to 1 stoichiometric ratio, and their binding affinity increases ten-fold as temperature elevates (5 °C to 37 °C). RTA-VPg binary complex formation is enthalpically driven and favored by entropy, resulting in an overall favorable energy, ΔG = −136.8 kJ/mol. Molecular modeling supports our experimental observations and predicts a major contribution of electrostatic interactions, suggesting an allosteric mechanism of downregulation of RTA activity through conformational changes in RTA structure, and/or disruption of binding with the ribosomal stalk. Fluorescence anisotropy studies show that heat affects the rate constant and the activation energy for the RTA-VPg complex, Ea = −62.1 kJ/mol. The thermodynamic and kinetic findings presented here are an initial lead study with promising results and provides a rational approach for synthesis of therapeutic peptides that successfully eliminate toxicity of ricin, and other cytotoxic RIPs. [Display omitted] •VPg1–110 peptide binds to and downregulates RTA activity in vitro.•RTA-VPg interactions are favored energetically.•Molecular docking predicts disruption of RTA binding to the ribosomal stalk.
ISSN:1570-9639
1878-1454
DOI:10.1016/j.bbapap.2019.02.002