Integrative Modeling of a Sin3/HDAC Complex Sub-structure
Sin3/HDAC complexes function by deacetylating histones, condensing chromatin, and modulating gene expression. Although components used to build these complexes have been well defined, we still have only a limited understanding of the structure of the Sin3/HDAC subunits assembled around the scaffoldi...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2020-04, Vol.31 (2), p.107516-107516, Article 107516 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sin3/HDAC complexes function by deacetylating histones, condensing chromatin, and modulating gene expression. Although components used to build these complexes have been well defined, we still have only a limited understanding of the structure of the Sin3/HDAC subunits assembled around the scaffolding protein SIN3A. To characterize the spatial arrangement of Sin3 subunits, we combined Halo affinity capture, chemical crosslinking, and high-resolution mass spectrometry (XL-MS) to determine intersubunit distance constraints, identifying 66 interprotein and 63 self-crosslinks for 13 Sin3 subunits. Having assessed crosslink authenticity by mapping self-crosslinks onto existing structures, we used distance restraints from interprotein crosslinks to guide assembly of a Sin3 complex substructure. We identified the relative positions of subunits SAP30L, HDAC1, SUDS3, HDAC2, and ING1 around the SIN3A scaffold. The architecture of this subassembly suggests that multiple factors have space to assemble to collectively influence the behavior of the catalytic subunit HDAC1.
[Display omitted]
•66 interprotein and 63 self cross-links for 13 Sin3 subunits•Crosslink-guided docking of SIN3A, SAP30L, and HDAC1 structures•Positions of subunits SAP30L, HDAC1, SUDS3, HDAC2, and ING1 around SIN3A
Banks et al. capture positional information for subunits within Sin3/HDAC complexes by combining crosslinking and high-resolution mass spectrometry. This information is then used to guide docking of Sin3 subunit structures to develop a model of a Sin3/HDAC complex sub-structure. |
---|---|
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2020.03.080 |