Investigation on Microstructures and Mechanical Properties of the Hypoeutectic Al-10Si-0.8Fe-XEr Alloy

In this paper, the effect of Er addition (0.2, 0.5, 0.65, 0.8, 1.0, and 1.5 wt. %) on the microstructure evolution and tensile properties of as-cast hypereutectic Al-10Si-0.8Fe alloy was investigated. The phases and their morphologies in these alloys were identified by XRD and SEM equipped with EDX...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scanning 2020-01, Vol.2020 (2020), p.1-8
Hauptverfasser: Huang, Kui, Peng, L. X., Wang, Huachun, Hu, Zhiliu, Zhao, Yanjun, Liu, Yiyuan, Tang, Peng, Deng, Songyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the effect of Er addition (0.2, 0.5, 0.65, 0.8, 1.0, and 1.5 wt. %) on the microstructure evolution and tensile properties of as-cast hypereutectic Al-10Si-0.8Fe alloy was investigated. The phases and their morphologies in these alloys were identified by XRD and SEM equipped with EDX with the help of metallographic analysis techniques; the length of the secondary phase (LSP) and secondary dendrite arm spacing (SDAS) of α-Al grain were quantified. The results indicated that the second phases (primary Si, eutectic Si, and iron-rich phases) and α-Al grain were significantly refined when the addition of Er increased from 0 to 0.8 wt. %. The mean LSP and SADS values were decreased to a minimum value when the Er addition reached 0.8 wt. %. However, the second phases and α-Al grain became coarser when the level of Er increased more than 0.8 wt. %. The analysis of XRD shows that Er mainly exists in the form of Er2Si compound. The microstructure modification also has a significant effect on the mechanical properties of the alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) increase from 52.86 MPa, 163.84 MPa, and 3.45% to 71.01 MPa, 163.84 MPa, and 5.65%, respectively. From the fracture surface, the promotions of mechanical properties are due to the dispersion and pinning reinforcement caused by the Er2Si phase.
ISSN:0161-0457
1932-8745
DOI:10.1155/2020/9147871