YAAM: Yeast Amino Acid Modifications Database
Proteins are dynamic molecules that regulate a myriad of cellular functions; these functions may be regulated by protein post-translational modifications (PTMs) that mediate the activity, localization and interaction partners of proteins. Thus, understanding the meaning of a single PTM or the combin...
Gespeichert in:
Veröffentlicht in: | Database : the journal of biological databases and curation 2018-01, Vol.2018 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteins are dynamic molecules that regulate a myriad of cellular functions; these functions may be regulated by protein post-translational modifications (PTMs) that mediate the activity, localization and interaction partners of proteins. Thus, understanding the meaning of a single PTM or the combination of several of them is essential to unravel the mechanisms of protein regulation. Yeast Amino Acid Modification (YAAM) (http://yaam.ifc.unam.mx) is a comprehensive database that contains information from 121 921 residues of proteins, which are post-translationally modified in the yeast model Saccharomyces cerevisiae. All the PTMs contained in YAAM have been confirmed experimentally. YAAM database maps PTM residues in a 3D canvas for 680 proteins with a known 3D structure. The structure can be visualized and manipulated using the most common web browsers without the need for any additional plugin. The aim of our database is to retrieve and organize data about the location of modified amino acids providing information in a concise but comprehensive and user-friendly way, enabling users to find relevant information on PTMs. Given that PTMs influence almost all aspects of the biology of both healthy and diseased cells, identifying and understanding PTMs is critical in the study of molecular and cell biology. YAAM allows users to perform multiple searches, up to three modifications at the same residue, giving the possibility to explore possible regulatory mechanism for some proteins. Using YAAM search engine, we found three different PTMs of lysine residues involved in protein translation. This suggests an important regulatory mechanism for protein translation that needs to be further studied.
Database URL: http://yaam.ifc.unam.mx/ |
---|---|
ISSN: | 1758-0463 1758-0463 |
DOI: | 10.1093/database/bax099 |