Network-based prediction of drug–target interactions using an arbitrary-order proximity embedded deep forest

Abstract Motivation Systematic identification of molecular targets among known drugs plays an essential role in drug repurposing and understanding of their unexpected side effects. Computational approaches for prediction of drug–target interactions (DTIs) are highly desired in comparison to traditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-05, Vol.36 (9), p.2805-2812
Hauptverfasser: Zeng, Xiangxiang, Zhu, Siyi, Hou, Yuan, Zhang, Pengyue, Li, Lang, Li, Jing, Huang, L Frank, Lewis, Stephen J, Nussinov, Ruth, Cheng, Feixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation Systematic identification of molecular targets among known drugs plays an essential role in drug repurposing and understanding of their unexpected side effects. Computational approaches for prediction of drug–target interactions (DTIs) are highly desired in comparison to traditional experimental assays. Furthermore, recent advances of multiomics technologies and systems biology approaches have generated large-scale heterogeneous, biological networks, which offer unexpected opportunities for network-based identification of new molecular targets among known drugs. Results In this study, we present a network-based computational framework, termed AOPEDF, an arbitrary-order proximity embedded deep forest approach, for prediction of DTIs. AOPEDF learns a low-dimensional vector representation of features that preserve arbitrary-order proximity from a highly integrated, heterogeneous biological network connecting drugs, targets (proteins) and diseases. In total, we construct a heterogeneous network by uniquely integrating 15 networks covering chemical, genomic, phenotypic and network profiles among drugs, proteins/targets and diseases. Then, we build a cascade deep forest classifier to infer new DTIs. Via systematic performance evaluation, AOPEDF achieves high accuracy in identifying molecular targets among known drugs on two external validation sets collected from DrugCentral [area under the receiver operating characteristic curve (AUROC) = 0.868] and ChEMBL (AUROC = 0.768) databases, outperforming several state-of-the-art methods. In a case study, we showcase that multiple molecular targets predicted by AOPEDF are associated with mechanism-of-action of substance abuse disorder for several marketed drugs (such as aripiprazole, risperidone and haloperidol). Availability and implementation Source code and data can be downloaded from https://github.com/ChengF-Lab/AOPEDF. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa010