Effects of synaptic integration on the dynamics and computational performance of spiking neural network

Neurons in the brain receive thousands of synaptic inputs from other neurons. This afferent information is processed by neurons through synaptic integration, which is an important information processing mechanism in biological neural networks. Synaptic currents integrated from spiking trains of pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive neurodynamics 2020-06, Vol.14 (3), p.347-357
Hauptverfasser: Li, Xiumin, Luo, Shengyuan, Xue, Fangzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons in the brain receive thousands of synaptic inputs from other neurons. This afferent information is processed by neurons through synaptic integration, which is an important information processing mechanism in biological neural networks. Synaptic currents integrated from spiking trains of presynaptic neurons have complex nonlinear dynamics which endow neurons with significant computational abilities. However, in many computational studies of neural networks, external input currents are often simply taken as a direct current that is static. In this paper, the influences of synaptic and noise external currents on the dynamics of spiking neural network and its computational capability have been investigated in detail. Our results show that due to the nonlinear synaptic integration, both of fast and slow excitatory synaptic currents have much more complex and oscillatory fluctuations than the noise current with the same average intensity. Thus network driven by synaptic external current exhibits remarkably more complex dynamics than that driven by noise external current. Interestingly, the enhancement of network activity is beneficial for information transmission, which is further supported by two computational tasks conducted on the liquid state machine (LSM) network. LSM with synaptic external current displays considerably better performance in both nonlinear fitting and pattern classification than that with noise external current. Synaptic integration can significantly enhance the entropy of activity patterns and computational performance of LSM. Our results demonstrate that the complex dynamics of nonlinear synaptic integration play a critical role in the computational abilities of neural networks and should be more broadly considered in the modelling studies of spiking neural networks.
ISSN:1871-4080
1871-4099
DOI:10.1007/s11571-020-09572-y