Rheology of magnetic colloids containing clusters of particle platelets and polymer nanofibres

Magnetic hydrogels (ferrogels) are soft materials with a wide range of applications, especially in biomedicine because (i) they can be provided with the required biocompatibility; (ii) their heterogeneous structure allows their use as scaffolds for tissue engineering; (iii) their mechanical properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2020-05, Vol.378 (2171), p.20190255-20190255
Hauptverfasser: Abrougui, Mariem Mekni, Srasra, Ezzeddine, Lopez-Lopez, Modesto T, Duran, Juan D G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic hydrogels (ferrogels) are soft materials with a wide range of applications, especially in biomedicine because (i) they can be provided with the required biocompatibility; (ii) their heterogeneous structure allows their use as scaffolds for tissue engineering; (iii) their mechanical properties can be modified by changing different design parameters or by the action of magnetic fields. These characteristics confer them unique properties for acting as patterns that mimic the architecture of biological systems. In addition, and (iv) given their high porosity and aqueous content, ferrogels can be loaded with drugs and guided towards specific targets for local (non-systemic) pharmaceutical treatments. The ferrogels prepared in this work contain magnetic particles obtained by precipitation of magnetite nanoparticles onto the porous surface of bentonite platelets. Then, the particles were functionalized by adsorption of alginate molecules and dispersed in an aqueous solution of sodium alginate. Finally, the gelation was promoted by cross-linking the alginate molecules with Ca ions. The viscoelastic properties of the ferrogels were measured in the absence/presence of external magnetic fields, showing that these ferrogels exhibited a strong enough magnetorheological effect. This behaviour is explained considering the field-induced strengthening of the heterogeneous (particle-polymer) network generated inside the ferrogel. This article is part of the theme issue 'Patterns in soft and biological matters'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2019.0255