Improvement of Ethanol Tolerance by Inactive Protoplast Fusion in Saccharomyces cerevisiae
Saccharomyces cerevisiae is a typical fermentation yeast in beer production. Improving ethanol tolerance of S. cerevisiae will increase fermentation efficiency, thereby reducing capital costs. Here, we found that S. cerevisiae strain L exhibited a higher ethanol tolerance (14%, v/v) than the ferment...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Saccharomyces cerevisiae is a typical fermentation yeast in beer production. Improving ethanol tolerance of S. cerevisiae will increase fermentation efficiency, thereby reducing capital costs. Here, we found that S. cerevisiae strain L exhibited a higher ethanol tolerance (14%, v/v) than the fermentative strain Q (10%, v/v). In order to enhance the strain Q ethanol tolerance but preserve its fermentation property, protoplast fusion was performed with haploids from strain Q and L. The fusant Q/L-f2 with 14% ethanol tolerance was obtained. Meanwhile, the fermentation properties (flocculability, SO2 production, α-N assimilation rate, GSH production, etc.) of Q/L-f2 were similar to those of strain Q. Therefore, our works established a series of high ethanol-tolerant strains in beer production. Moreover, this demonstration of inactivated protoplast fusion in industrial S. cerevisiae strain opens many doors for yeast-based biotechnological applications. |
---|---|
ISSN: | 2314-6133 2314-6141 |
DOI: | 10.1155/2020/1979318 |