Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis

We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-05, Vol.10 (1), p.7531-7531, Article 7531
Hauptverfasser: Chang, Hyuk-Joon, Lee, Sang-Jeong, Yong, Tae-Hoon, Shin, Nan-Young, Jang, Bong-Geun, Kim, Jo-Eun, Huh, Kyung-Hoe, Lee, Sam-Sun, Heo, Min-Suk, Choi, Soon-Chul, Kim, Tae-Il, Yi, Won-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7531
container_issue 1
container_start_page 7531
container_title Scientific reports
container_volume 10
creator Chang, Hyuk-Joon
Lee, Sang-Jeong
Yong, Tae-Hoon
Shin, Nan-Young
Jang, Bong-Geun
Kim, Jo-Eun
Huh, Kyung-Hoe
Lee, Sam-Sun
Heo, Min-Suk
Choi, Soon-Chul
Kim, Tae-Il
Yi, Won-Jin
description We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning architecture for detection and conventional CAD processing for classification. Deep learning was used to detect the radiographic bone level (or the CEJ level) as a simple structure for the whole jaw on panoramic radiographs. Next, the percentage rate analysis of the radiographic bone loss combined the tooth long-axis with the periodontal bone and CEJ levels. Using the percentage rate, we could automatically classify the periodontal bone loss. This classification was used for periodontitis staging according to the new criteria proposed at the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. The Pearson correlation coefficient of the automatic method with the diagnoses by radiologists was 0.73 overall for the whole jaw (p 
doi_str_mv 10.1038/s41598-020-64509-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399243266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a37f8aad4bd1e6446ccc5672d68f821b6f546e38c85fdec942701168e6ec03e3</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMottR-ARcScONmNP8n2Qi1VSs8UbD7kJe5M02ZlzyTjPD66U19tT5dmE0C53fPzb0HoeeUvKaE6zdFUGl0RxjplJDEdLeP0DEjQnaMM_b44H2ETku5Ie1IZgQ1T9ERZ7xvujlG_gJgi1fgcgxxwpe7dQ4D_gz1Og24Jny21LRxNXg3zzt8EdwUUwH8FXJIQ4rVzfhdioBXqRTs4oC_VTcd6KGG8gw9Gd1c4PT-PkFXH95fnV92qy8fP52frTovBamd4_2onRvEeqCghFDee6l6Nig9akbXapRCAddey3EAbwTrCaVKgwJPOPAT9HZvu13WGxg8xJrdbLc5bFze2eSC_VuJ4dpO6YdtqyCa9M3g1b1BTt8XKNVuQvEwzy5CWopl3BgmOFOqoS__QW_SkmOb7o7SUmlmZKPYnvK5rSfD-PAZSuxdinafom0p2l8p2ttW9OJwjIeS35k1gO-B0qQ4Qf7T-z-2PwGl3Km6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398568295</pqid></control><display><type>article</type><title>Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Hyuk-Joon ; Lee, Sang-Jeong ; Yong, Tae-Hoon ; Shin, Nan-Young ; Jang, Bong-Geun ; Kim, Jo-Eun ; Huh, Kyung-Hoe ; Lee, Sam-Sun ; Heo, Min-Suk ; Choi, Soon-Chul ; Kim, Tae-Il ; Yi, Won-Jin</creator><creatorcontrib>Chang, Hyuk-Joon ; Lee, Sang-Jeong ; Yong, Tae-Hoon ; Shin, Nan-Young ; Jang, Bong-Geun ; Kim, Jo-Eun ; Huh, Kyung-Hoe ; Lee, Sam-Sun ; Heo, Min-Suk ; Choi, Soon-Chul ; Kim, Tae-Il ; Yi, Won-Jin</creatorcontrib><description>We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning architecture for detection and conventional CAD processing for classification. Deep learning was used to detect the radiographic bone level (or the CEJ level) as a simple structure for the whole jaw on panoramic radiographs. Next, the percentage rate analysis of the radiographic bone loss combined the tooth long-axis with the periodontal bone and CEJ levels. Using the percentage rate, we could automatically classify the periodontal bone loss. This classification was used for periodontitis staging according to the new criteria proposed at the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. The Pearson correlation coefficient of the automatic method with the diagnoses by radiologists was 0.73 overall for the whole jaw (p &lt; 0.01), and the intraclass correlation value 0.91 overall for the whole jaw (p &lt; 0.01). The novel hybrid framework that combined deep learning architecture and the conventional CAD approach demonstrated high accuracy and excellent reliability in the automatic diagnosis of periodontal bone loss and staging of periodontitis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64509-z</identifier><identifier>PMID: 32372049</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/699/3020/3029 ; Algorithms ; Alveolar Bone Loss - diagnostic imaging ; Bone loss ; Classification ; Correlation coefficient ; Deep Learning ; Diagnosis, Computer-Assisted - methods ; Gum disease ; Humanities and Social Sciences ; Humans ; Image Processing, Computer-Assisted - methods ; Jaw ; Mandible - diagnostic imaging ; Maxilla - diagnostic imaging ; multidisciplinary ; Pattern Recognition, Automated ; Periodontitis ; Periodontitis - diagnosis ; Radiography ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Teeth</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.7531-7531, Article 7531</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a37f8aad4bd1e6446ccc5672d68f821b6f546e38c85fdec942701168e6ec03e3</citedby><cites>FETCH-LOGICAL-c540t-a37f8aad4bd1e6446ccc5672d68f821b6f546e38c85fdec942701168e6ec03e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200807/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200807/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32372049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Hyuk-Joon</creatorcontrib><creatorcontrib>Lee, Sang-Jeong</creatorcontrib><creatorcontrib>Yong, Tae-Hoon</creatorcontrib><creatorcontrib>Shin, Nan-Young</creatorcontrib><creatorcontrib>Jang, Bong-Geun</creatorcontrib><creatorcontrib>Kim, Jo-Eun</creatorcontrib><creatorcontrib>Huh, Kyung-Hoe</creatorcontrib><creatorcontrib>Lee, Sam-Sun</creatorcontrib><creatorcontrib>Heo, Min-Suk</creatorcontrib><creatorcontrib>Choi, Soon-Chul</creatorcontrib><creatorcontrib>Kim, Tae-Il</creatorcontrib><creatorcontrib>Yi, Won-Jin</creatorcontrib><title>Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning architecture for detection and conventional CAD processing for classification. Deep learning was used to detect the radiographic bone level (or the CEJ level) as a simple structure for the whole jaw on panoramic radiographs. Next, the percentage rate analysis of the radiographic bone loss combined the tooth long-axis with the periodontal bone and CEJ levels. Using the percentage rate, we could automatically classify the periodontal bone loss. This classification was used for periodontitis staging according to the new criteria proposed at the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. The Pearson correlation coefficient of the automatic method with the diagnoses by radiologists was 0.73 overall for the whole jaw (p &lt; 0.01), and the intraclass correlation value 0.91 overall for the whole jaw (p &lt; 0.01). The novel hybrid framework that combined deep learning architecture and the conventional CAD approach demonstrated high accuracy and excellent reliability in the automatic diagnosis of periodontal bone loss and staging of periodontitis.</description><subject>639/166/985</subject><subject>692/699/3020/3029</subject><subject>Algorithms</subject><subject>Alveolar Bone Loss - diagnostic imaging</subject><subject>Bone loss</subject><subject>Classification</subject><subject>Correlation coefficient</subject><subject>Deep Learning</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Gum disease</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Jaw</subject><subject>Mandible - diagnostic imaging</subject><subject>Maxilla - diagnostic imaging</subject><subject>multidisciplinary</subject><subject>Pattern Recognition, Automated</subject><subject>Periodontitis</subject><subject>Periodontitis - diagnosis</subject><subject>Radiography</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Teeth</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rFTEUxYMottR-ARcScONmNP8n2Qi1VSs8UbD7kJe5M02ZlzyTjPD66U19tT5dmE0C53fPzb0HoeeUvKaE6zdFUGl0RxjplJDEdLeP0DEjQnaMM_b44H2ETku5Ie1IZgQ1T9ERZ7xvujlG_gJgi1fgcgxxwpe7dQ4D_gz1Og24Jny21LRxNXg3zzt8EdwUUwH8FXJIQ4rVzfhdioBXqRTs4oC_VTcd6KGG8gw9Gd1c4PT-PkFXH95fnV92qy8fP52frTovBamd4_2onRvEeqCghFDee6l6Nig9akbXapRCAddey3EAbwTrCaVKgwJPOPAT9HZvu13WGxg8xJrdbLc5bFze2eSC_VuJ4dpO6YdtqyCa9M3g1b1BTt8XKNVuQvEwzy5CWopl3BgmOFOqoS__QW_SkmOb7o7SUmlmZKPYnvK5rSfD-PAZSuxdinafom0p2l8p2ttW9OJwjIeS35k1gO-B0qQ4Qf7T-z-2PwGl3Km6</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Chang, Hyuk-Joon</creator><creator>Lee, Sang-Jeong</creator><creator>Yong, Tae-Hoon</creator><creator>Shin, Nan-Young</creator><creator>Jang, Bong-Geun</creator><creator>Kim, Jo-Eun</creator><creator>Huh, Kyung-Hoe</creator><creator>Lee, Sam-Sun</creator><creator>Heo, Min-Suk</creator><creator>Choi, Soon-Chul</creator><creator>Kim, Tae-Il</creator><creator>Yi, Won-Jin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200505</creationdate><title>Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis</title><author>Chang, Hyuk-Joon ; Lee, Sang-Jeong ; Yong, Tae-Hoon ; Shin, Nan-Young ; Jang, Bong-Geun ; Kim, Jo-Eun ; Huh, Kyung-Hoe ; Lee, Sam-Sun ; Heo, Min-Suk ; Choi, Soon-Chul ; Kim, Tae-Il ; Yi, Won-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a37f8aad4bd1e6446ccc5672d68f821b6f546e38c85fdec942701168e6ec03e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/985</topic><topic>692/699/3020/3029</topic><topic>Algorithms</topic><topic>Alveolar Bone Loss - diagnostic imaging</topic><topic>Bone loss</topic><topic>Classification</topic><topic>Correlation coefficient</topic><topic>Deep Learning</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Gum disease</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Jaw</topic><topic>Mandible - diagnostic imaging</topic><topic>Maxilla - diagnostic imaging</topic><topic>multidisciplinary</topic><topic>Pattern Recognition, Automated</topic><topic>Periodontitis</topic><topic>Periodontitis - diagnosis</topic><topic>Radiography</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Hyuk-Joon</creatorcontrib><creatorcontrib>Lee, Sang-Jeong</creatorcontrib><creatorcontrib>Yong, Tae-Hoon</creatorcontrib><creatorcontrib>Shin, Nan-Young</creatorcontrib><creatorcontrib>Jang, Bong-Geun</creatorcontrib><creatorcontrib>Kim, Jo-Eun</creatorcontrib><creatorcontrib>Huh, Kyung-Hoe</creatorcontrib><creatorcontrib>Lee, Sam-Sun</creatorcontrib><creatorcontrib>Heo, Min-Suk</creatorcontrib><creatorcontrib>Choi, Soon-Chul</creatorcontrib><creatorcontrib>Kim, Tae-Il</creatorcontrib><creatorcontrib>Yi, Won-Jin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Hyuk-Joon</au><au>Lee, Sang-Jeong</au><au>Yong, Tae-Hoon</au><au>Shin, Nan-Young</au><au>Jang, Bong-Geun</au><au>Kim, Jo-Eun</au><au>Huh, Kyung-Hoe</au><au>Lee, Sam-Sun</au><au>Heo, Min-Suk</au><au>Choi, Soon-Chul</au><au>Kim, Tae-Il</au><au>Yi, Won-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-05-05</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>7531</spage><epage>7531</epage><pages>7531-7531</pages><artnum>7531</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning architecture for detection and conventional CAD processing for classification. Deep learning was used to detect the radiographic bone level (or the CEJ level) as a simple structure for the whole jaw on panoramic radiographs. Next, the percentage rate analysis of the radiographic bone loss combined the tooth long-axis with the periodontal bone and CEJ levels. Using the percentage rate, we could automatically classify the periodontal bone loss. This classification was used for periodontitis staging according to the new criteria proposed at the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. The Pearson correlation coefficient of the automatic method with the diagnoses by radiologists was 0.73 overall for the whole jaw (p &lt; 0.01), and the intraclass correlation value 0.91 overall for the whole jaw (p &lt; 0.01). The novel hybrid framework that combined deep learning architecture and the conventional CAD approach demonstrated high accuracy and excellent reliability in the automatic diagnosis of periodontal bone loss and staging of periodontitis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32372049</pmid><doi>10.1038/s41598-020-64509-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-05, Vol.10 (1), p.7531-7531, Article 7531
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200807
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/166/985
692/699/3020/3029
Algorithms
Alveolar Bone Loss - diagnostic imaging
Bone loss
Classification
Correlation coefficient
Deep Learning
Diagnosis, Computer-Assisted - methods
Gum disease
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Jaw
Mandible - diagnostic imaging
Maxilla - diagnostic imaging
multidisciplinary
Pattern Recognition, Automated
Periodontitis
Periodontitis - diagnosis
Radiography
Reproducibility of Results
Science
Science (multidisciplinary)
Teeth
title Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Hybrid%20Method%20to%20Automatically%20Diagnose%20Periodontal%20Bone%20Loss%20and%20Stage%20Periodontitis&rft.jtitle=Scientific%20reports&rft.au=Chang,%20Hyuk-Joon&rft.date=2020-05-05&rft.volume=10&rft.issue=1&rft.spage=7531&rft.epage=7531&rft.pages=7531-7531&rft.artnum=7531&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64509-z&rft_dat=%3Cproquest_pubme%3E2399243266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398568295&rft_id=info:pmid/32372049&rfr_iscdi=true