Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis

We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-05, Vol.10 (1), p.7531-7531, Article 7531
Hauptverfasser: Chang, Hyuk-Joon, Lee, Sang-Jeong, Yong, Tae-Hoon, Shin, Nan-Young, Jang, Bong-Geun, Kim, Jo-Eun, Huh, Kyung-Hoe, Lee, Sam-Sun, Heo, Min-Suk, Choi, Soon-Chul, Kim, Tae-Il, Yi, Won-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning architecture for detection and conventional CAD processing for classification. Deep learning was used to detect the radiographic bone level (or the CEJ level) as a simple structure for the whole jaw on panoramic radiographs. Next, the percentage rate analysis of the radiographic bone loss combined the tooth long-axis with the periodontal bone and CEJ levels. Using the percentage rate, we could automatically classify the periodontal bone loss. This classification was used for periodontitis staging according to the new criteria proposed at the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. The Pearson correlation coefficient of the automatic method with the diagnoses by radiologists was 0.73 overall for the whole jaw (p 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-64509-z