Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches
For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and com...
Gespeichert in:
Veröffentlicht in: | Microbial genomics 2020-03, Vol.6 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Microbial genomics |
container_volume | 6 |
creator | Marques, Andreia T Vítor, Jorge M B Santos, Andrea Oleastro, Mónica Vale, Filipa F |
description | For a long time
infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of
treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of
strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure. |
doi_str_mv | 10.1099/mgen.0.000344 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32118532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobsxdeiv5A535aJrUC0GGOmHgzbwOp2m6RtqmJFXov7djOuZVXshz3nN4ELqlZEVJnt-3e9utyIoQwtP0As0ZETIRSqjLszxDyxg_J4YKleVSXKMZZ5QqwdkcwS7YrozYdXhjG2d8AWawAfdj44PDwUYXB-iMxYPHpoHghjr4djSue8DVlHBf284PY-_MAZkO8u0Uoe-DB1PbeIOuKmiiXf6-C_Tx8rxbb5Lt--vb-mmbmFTwIVEk5YWtJBAFKSFGSMUFyyGnUglhDc04YyYDU5aVqECl0nJbCCaqnJfADF-gx2Nv_1W0tjS2GwI0ug-uhTBqD07__-lcrff-W0s2ucnkVJAcC0zwMQZbnWYp0Qfd-qBbE33UPfF35wtP9J9c_gOTq38K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Marques, Andreia T ; Vítor, Jorge M B ; Santos, Andrea ; Oleastro, Mónica ; Vale, Filipa F</creator><creatorcontrib>Marques, Andreia T ; Vítor, Jorge M B ; Santos, Andrea ; Oleastro, Mónica ; Vale, Filipa F</creatorcontrib><description>For a long time
infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of
treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of
strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.</description><identifier>ISSN: 2057-5858</identifier><identifier>EISSN: 2057-5858</identifier><identifier>DOI: 10.1099/mgen.0.000344</identifier><identifier>PMID: 32118532</identifier><language>eng</language><publisher>England: Microbiology Society</publisher><subject>Anti-Bacterial Agents - therapeutic use ; Clarithromycin - therapeutic use ; Drug Resistance, Bacterial - genetics ; Genome, Bacterial ; Genomics ; Helicobacter Infections - drug therapy ; Helicobacter Infections - microbiology ; Helicobacter pylori - genetics ; High-Throughput Nucleotide Sequencing ; Mini Review ; Phenotype ; RNA, Ribosomal, 23S</subject><ispartof>Microbial genomics, 2020-03, Vol.6 (3)</ispartof><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</citedby><cites>FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</cites><orcidid>0000-0003-4635-0105 ; 0000-0001-6360-2576 ; 0000-0001-6486-3444 ; 0000-0001-7302-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200067/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200067/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32118532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marques, Andreia T</creatorcontrib><creatorcontrib>Vítor, Jorge M B</creatorcontrib><creatorcontrib>Santos, Andrea</creatorcontrib><creatorcontrib>Oleastro, Mónica</creatorcontrib><creatorcontrib>Vale, Filipa F</creatorcontrib><title>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</title><title>Microbial genomics</title><addtitle>Microb Genom</addtitle><description>For a long time
infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of
treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of
strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.</description><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Clarithromycin - therapeutic use</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Helicobacter Infections - drug therapy</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Mini Review</subject><subject>Phenotype</subject><subject>RNA, Ribosomal, 23S</subject><issn>2057-5858</issn><issn>2057-5858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1LwzAUhoMobsxdeiv5A535aJrUC0GGOmHgzbwOp2m6RtqmJFXov7djOuZVXshz3nN4ELqlZEVJnt-3e9utyIoQwtP0As0ZETIRSqjLszxDyxg_J4YKleVSXKMZZ5QqwdkcwS7YrozYdXhjG2d8AWawAfdj44PDwUYXB-iMxYPHpoHghjr4djSue8DVlHBf284PY-_MAZkO8u0Uoe-DB1PbeIOuKmiiXf6-C_Tx8rxbb5Lt--vb-mmbmFTwIVEk5YWtJBAFKSFGSMUFyyGnUglhDc04YyYDU5aVqECl0nJbCCaqnJfADF-gx2Nv_1W0tjS2GwI0ug-uhTBqD07__-lcrff-W0s2ucnkVJAcC0zwMQZbnWYp0Qfd-qBbE33UPfF35wtP9J9c_gOTq38K</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Marques, Andreia T</creator><creator>Vítor, Jorge M B</creator><creator>Santos, Andrea</creator><creator>Oleastro, Mónica</creator><creator>Vale, Filipa F</creator><general>Microbiology Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4635-0105</orcidid><orcidid>https://orcid.org/0000-0001-6360-2576</orcidid><orcidid>https://orcid.org/0000-0001-6486-3444</orcidid><orcidid>https://orcid.org/0000-0001-7302-1193</orcidid></search><sort><creationdate>20200301</creationdate><title>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</title><author>Marques, Andreia T ; Vítor, Jorge M B ; Santos, Andrea ; Oleastro, Mónica ; Vale, Filipa F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Clarithromycin - therapeutic use</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Helicobacter Infections - drug therapy</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Mini Review</topic><topic>Phenotype</topic><topic>RNA, Ribosomal, 23S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marques, Andreia T</creatorcontrib><creatorcontrib>Vítor, Jorge M B</creatorcontrib><creatorcontrib>Santos, Andrea</creatorcontrib><creatorcontrib>Oleastro, Mónica</creatorcontrib><creatorcontrib>Vale, Filipa F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marques, Andreia T</au><au>Vítor, Jorge M B</au><au>Santos, Andrea</au><au>Oleastro, Mónica</au><au>Vale, Filipa F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</atitle><jtitle>Microbial genomics</jtitle><addtitle>Microb Genom</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><issn>2057-5858</issn><eissn>2057-5858</eissn><abstract>For a long time
infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of
treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of
strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.</abstract><cop>England</cop><pub>Microbiology Society</pub><pmid>32118532</pmid><doi>10.1099/mgen.0.000344</doi><orcidid>https://orcid.org/0000-0003-4635-0105</orcidid><orcidid>https://orcid.org/0000-0001-6360-2576</orcidid><orcidid>https://orcid.org/0000-0001-6486-3444</orcidid><orcidid>https://orcid.org/0000-0001-7302-1193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-5858 |
ispartof | Microbial genomics, 2020-03, Vol.6 (3) |
issn | 2057-5858 2057-5858 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200067 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Anti-Bacterial Agents - therapeutic use Clarithromycin - therapeutic use Drug Resistance, Bacterial - genetics Genome, Bacterial Genomics Helicobacter Infections - drug therapy Helicobacter Infections - microbiology Helicobacter pylori - genetics High-Throughput Nucleotide Sequencing Mini Review Phenotype RNA, Ribosomal, 23S |
title | Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trends%20in%20Helicobacter%20pylori%20resistance%20to%20clarithromycin:%20from%20phenotypic%20to%20genomic%20approaches&rft.jtitle=Microbial%20genomics&rft.au=Marques,%20Andreia%20T&rft.date=2020-03-01&rft.volume=6&rft.issue=3&rft.issn=2057-5858&rft.eissn=2057-5858&rft_id=info:doi/10.1099/mgen.0.000344&rft_dat=%3Cpubmed_cross%3E32118532%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32118532&rfr_iscdi=true |