Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches

For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial genomics 2020-03, Vol.6 (3)
Hauptverfasser: Marques, Andreia T, Vítor, Jorge M B, Santos, Andrea, Oleastro, Mónica, Vale, Filipa F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Microbial genomics
container_volume 6
creator Marques, Andreia T
Vítor, Jorge M B
Santos, Andrea
Oleastro, Mónica
Vale, Filipa F
description For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.
doi_str_mv 10.1099/mgen.0.000344
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32118532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobsxdeiv5A535aJrUC0GGOmHgzbwOp2m6RtqmJFXov7djOuZVXshz3nN4ELqlZEVJnt-3e9utyIoQwtP0As0ZETIRSqjLszxDyxg_J4YKleVSXKMZZ5QqwdkcwS7YrozYdXhjG2d8AWawAfdj44PDwUYXB-iMxYPHpoHghjr4djSue8DVlHBf284PY-_MAZkO8u0Uoe-DB1PbeIOuKmiiXf6-C_Tx8rxbb5Lt--vb-mmbmFTwIVEk5YWtJBAFKSFGSMUFyyGnUglhDc04YyYDU5aVqECl0nJbCCaqnJfADF-gx2Nv_1W0tjS2GwI0ug-uhTBqD07__-lcrff-W0s2ucnkVJAcC0zwMQZbnWYp0Qfd-qBbE33UPfF35wtP9J9c_gOTq38K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Marques, Andreia T ; Vítor, Jorge M B ; Santos, Andrea ; Oleastro, Mónica ; Vale, Filipa F</creator><creatorcontrib>Marques, Andreia T ; Vítor, Jorge M B ; Santos, Andrea ; Oleastro, Mónica ; Vale, Filipa F</creatorcontrib><description>For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.</description><identifier>ISSN: 2057-5858</identifier><identifier>EISSN: 2057-5858</identifier><identifier>DOI: 10.1099/mgen.0.000344</identifier><identifier>PMID: 32118532</identifier><language>eng</language><publisher>England: Microbiology Society</publisher><subject>Anti-Bacterial Agents - therapeutic use ; Clarithromycin - therapeutic use ; Drug Resistance, Bacterial - genetics ; Genome, Bacterial ; Genomics ; Helicobacter Infections - drug therapy ; Helicobacter Infections - microbiology ; Helicobacter pylori - genetics ; High-Throughput Nucleotide Sequencing ; Mini Review ; Phenotype ; RNA, Ribosomal, 23S</subject><ispartof>Microbial genomics, 2020-03, Vol.6 (3)</ispartof><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</citedby><cites>FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</cites><orcidid>0000-0003-4635-0105 ; 0000-0001-6360-2576 ; 0000-0001-6486-3444 ; 0000-0001-7302-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200067/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200067/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32118532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marques, Andreia T</creatorcontrib><creatorcontrib>Vítor, Jorge M B</creatorcontrib><creatorcontrib>Santos, Andrea</creatorcontrib><creatorcontrib>Oleastro, Mónica</creatorcontrib><creatorcontrib>Vale, Filipa F</creatorcontrib><title>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</title><title>Microbial genomics</title><addtitle>Microb Genom</addtitle><description>For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.</description><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Clarithromycin - therapeutic use</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Helicobacter Infections - drug therapy</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Mini Review</subject><subject>Phenotype</subject><subject>RNA, Ribosomal, 23S</subject><issn>2057-5858</issn><issn>2057-5858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1LwzAUhoMobsxdeiv5A535aJrUC0GGOmHgzbwOp2m6RtqmJFXov7djOuZVXshz3nN4ELqlZEVJnt-3e9utyIoQwtP0As0ZETIRSqjLszxDyxg_J4YKleVSXKMZZ5QqwdkcwS7YrozYdXhjG2d8AWawAfdj44PDwUYXB-iMxYPHpoHghjr4djSue8DVlHBf284PY-_MAZkO8u0Uoe-DB1PbeIOuKmiiXf6-C_Tx8rxbb5Lt--vb-mmbmFTwIVEk5YWtJBAFKSFGSMUFyyGnUglhDc04YyYDU5aVqECl0nJbCCaqnJfADF-gx2Nv_1W0tjS2GwI0ug-uhTBqD07__-lcrff-W0s2ucnkVJAcC0zwMQZbnWYp0Qfd-qBbE33UPfF35wtP9J9c_gOTq38K</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Marques, Andreia T</creator><creator>Vítor, Jorge M B</creator><creator>Santos, Andrea</creator><creator>Oleastro, Mónica</creator><creator>Vale, Filipa F</creator><general>Microbiology Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4635-0105</orcidid><orcidid>https://orcid.org/0000-0001-6360-2576</orcidid><orcidid>https://orcid.org/0000-0001-6486-3444</orcidid><orcidid>https://orcid.org/0000-0001-7302-1193</orcidid></search><sort><creationdate>20200301</creationdate><title>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</title><author>Marques, Andreia T ; Vítor, Jorge M B ; Santos, Andrea ; Oleastro, Mónica ; Vale, Filipa F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8043bef7a08a400c5783529a917855ec16322c6acddf5fa847e3eb525f93da2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Clarithromycin - therapeutic use</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Helicobacter Infections - drug therapy</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Mini Review</topic><topic>Phenotype</topic><topic>RNA, Ribosomal, 23S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marques, Andreia T</creatorcontrib><creatorcontrib>Vítor, Jorge M B</creatorcontrib><creatorcontrib>Santos, Andrea</creatorcontrib><creatorcontrib>Oleastro, Mónica</creatorcontrib><creatorcontrib>Vale, Filipa F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marques, Andreia T</au><au>Vítor, Jorge M B</au><au>Santos, Andrea</au><au>Oleastro, Mónica</au><au>Vale, Filipa F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches</atitle><jtitle>Microbial genomics</jtitle><addtitle>Microb Genom</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>6</volume><issue>3</issue><issn>2057-5858</issn><eissn>2057-5858</eissn><abstract>For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.</abstract><cop>England</cop><pub>Microbiology Society</pub><pmid>32118532</pmid><doi>10.1099/mgen.0.000344</doi><orcidid>https://orcid.org/0000-0003-4635-0105</orcidid><orcidid>https://orcid.org/0000-0001-6360-2576</orcidid><orcidid>https://orcid.org/0000-0001-6486-3444</orcidid><orcidid>https://orcid.org/0000-0001-7302-1193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-5858
ispartof Microbial genomics, 2020-03, Vol.6 (3)
issn 2057-5858
2057-5858
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200067
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Anti-Bacterial Agents - therapeutic use
Clarithromycin - therapeutic use
Drug Resistance, Bacterial - genetics
Genome, Bacterial
Genomics
Helicobacter Infections - drug therapy
Helicobacter Infections - microbiology
Helicobacter pylori - genetics
High-Throughput Nucleotide Sequencing
Mini Review
Phenotype
RNA, Ribosomal, 23S
title Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trends%20in%20Helicobacter%20pylori%20resistance%20to%20clarithromycin:%20from%20phenotypic%20to%20genomic%20approaches&rft.jtitle=Microbial%20genomics&rft.au=Marques,%20Andreia%20T&rft.date=2020-03-01&rft.volume=6&rft.issue=3&rft.issn=2057-5858&rft.eissn=2057-5858&rft_id=info:doi/10.1099/mgen.0.000344&rft_dat=%3Cpubmed_cross%3E32118532%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32118532&rfr_iscdi=true