Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches

For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial genomics 2020-03, Vol.6 (3)
Hauptverfasser: Marques, Andreia T, Vítor, Jorge M B, Santos, Andrea, Oleastro, Mónica, Vale, Filipa F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a long time infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.
ISSN:2057-5858
2057-5858
DOI:10.1099/mgen.0.000344