potential of house flies to act as a vector of avian influenza subtype H5N1 under experimental conditions

The objective of the present study was to determine the potential for house flies (Musca domestica L.) (Diptera: Muscidae) to harbour the avian influenza (AI) H5N1 virus. Laboratory-reared flies were experimentally fed with a mixture containing the AI virus. Exposed flies were washed with brain-hear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical and veterinary entomology 2011-03, Vol.25 (1), p.58-63
Hauptverfasser: WANARATANA, S, PANYIM, S, PAKPINYO, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the present study was to determine the potential for house flies (Musca domestica L.) (Diptera: Muscidae) to harbour the avian influenza (AI) H5N1 virus. Laboratory-reared flies were experimentally fed with a mixture containing the AI virus. Exposed flies were washed with brain-heart infusion broth and followed by 70% alcohol before preparation of whole fly homogenate. The homogenate was inoculated into six 10-day-old embryonated chicken eggs (ECEs). Allantoic fluids were collected to determine the virus using the haemagglutination (HA) test, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real-time RT-PCR (RRT-PCR). In the first experiment, ECEs that were inoculated with the 50 AI virus exposed fly homogenates died within 48 h and HA and RT-PCR were positive for AI virus. In the second experiment, ECEs that were inoculated with only one fly died with positive HA test and RT-PCR. In the last experiment, a group of exposed flies was collected at 0, 6, 12, 24, 36, 48, 72 and 96 h post-exposure. Fly homogenates of each time point were tested by virus titration in ECEs and RRT-PCR. Virus titres declined in relation to exposure time. Furthermore, RRT-PCR results were positive at any time point. The present study shows that the flies may harbour the AI virus and could act as a mechanical vector of the AI virus.
ISSN:0269-283X
1365-2915
DOI:10.1111/j.1365-2915.2010.00928.x