How healthy older adults regulate lateral foot placement while walking in laterally destabilizing environments

Gait variability is generally associated with falls, but specific connections remain disputed. To reduce falls, we must first understand how older adults maintain lateral balance while walking, particularly when their stability is challenged. We recently developed computational models of lateral ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2020-05, Vol.104, p.109714-109714, Article 109714
Hauptverfasser: Kazanski, Meghan E., Cusumano, Joseph P., Dingwell, Jonathan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gait variability is generally associated with falls, but specific connections remain disputed. To reduce falls, we must first understand how older adults maintain lateral balance while walking, particularly when their stability is challenged. We recently developed computational models of lateral stepping, based on Goal Equivalent Manifolds, that separate effects of step-to-step regulation from variability. These show walking humans seek to strongly maintain step width, but also lateral position on their path. Here, 17 healthy older (ages 60+) and 17 healthy young (ages 18–31) adults walked in a virtual environment with no perturbations and with laterally destabilizing perturbations of either the visual field or treadmill platform. For step-to-step time series of step widths and lateral positions, we computed variability, statistical persistence and how much participants directly corrected deviations at each step. All participants exhibited significantly increased variability, decreased persistence and tighter direct control when perturbed. Simulations from our stepping regulation models indicate people responded to the increased variability imposed by these perturbations by either maintaining or tightening control of both step width and lateral position. Thus, while people strive to maintain lateral balance, they also actively strive to stay on their path. Healthy older participants exhibited slightly increased variability, but no differences from young in stepping regulation and no evidence of greater reliance on visual feedback, even when subjected to substantially destabilizing perturbations. Thus, age alone need not degrade lateral stepping control. This may help explain why directly connecting gait variability to fall risk has proven difficult.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2020.109714