Primary cilia control glucose homeostasis via islet paracrine interactions

Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-04, Vol.117 (16), p.8912-8923
Hauptverfasser: Hughes, Jing W., Cho, Jung Hoon, Conway, Hannah E., DiGruccio, Michael R., Ng, Xue Wen, Roseman, Henry F., Abreu, Damien, Urano, Fumihiko, Piston, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking β-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the β-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of β-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate β-cell–intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2001936117