Photomutagenicity of chlorpromazine and its N-demethylated metabolites assessed by NGS
The human genome is constantly attacked by endogenous and exogenous agents (ultraviolet light, xenobiotics, reactive oxygen species), which can induce chemical transformations leading to DNA lesions. To combat DNA damage, cells have developed several repair mechanisms; however, if the repair is defe...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.6879, Article 6879 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human genome is constantly attacked by endogenous and exogenous agents (ultraviolet light, xenobiotics, reactive oxygen species), which can induce chemical transformations leading to DNA lesions. To combat DNA damage, cells have developed several repair mechanisms; however, if the repair is defective, DNA lesions lead to permanent mutations. Single-cell gel electrophoresis (COMET assay) is a sensitive and well-established technique for quantifying DNA damage in individual cells. Nevertheless, this tool lacks relationship with mutagenesis. Therefore, to identify errors that give rise to mutations it would be convenient to test an alternative known procedure, such as next generation sequencing (NGS). Thus, the present work aims to evaluate the photomutagenicity of neuroleptic drug chlorpromazine (CPZ), and its
N
-demethylated metabolites using COMET assay and to test NGS as an alternative method to assess photomutagenesis. In this context, upon exposure to UVA radiation, COMET assay reveals CPZ-photosensitized DNA damage partially repaired by cells. Conversely with this result, metabolites demethylchlorpromazine (DMCPZ) and didemethylchlorpromazine (DDMCPZ) promote extensive DNA-photodamage, hardly repaired under the same conditions. Parallel assessment of mutagenesis by NGS is consistent with these results with minor discrepancies for DDMCPZ. To our knowledge, this is the first example demonstrating the utility of NGS for evaluating drug-induced photomutagenicity. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-63651-y |