Metabolic Lateralization in the Hypothalamus of Male Rats Related to Reproductive and Satiety States
The hypothalamus is the main regulatory center of many homeostatic processes, such as reproduction, food intake, and sleep-wake behavior. Recent findings show that there is a strongly interdependent side-linked localization of hypothalamic functions between the left and right hemispheres. The goal o...
Gespeichert in:
Veröffentlicht in: | Reproductive sciences (Thousand Oaks, Calif.) Calif.), 2020-05, Vol.27 (5), p.1197-1205 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hypothalamus is the main regulatory center of many homeostatic processes, such as reproduction, food intake, and sleep-wake behavior. Recent findings show that there is a strongly interdependent side-linked localization of hypothalamic functions between the left and right hemispheres. The goal of the present study was to trace functional asymmetry of the hypothalamus related to the regulation of food intake and reproduction, in male rodents. Subjects were examined through measurements of mitochondrial metabolism ex vivo. Impact of gonadectomy and scheduled feeding was tested on the modulation of hypothalamic metabolic asymmetry. Results show that in male rats, functional lateralization of the hypothalamus can be attributed to the satiety state rather than to reproductive control. Fasting caused left-sided metabolic dominance, while satiety was linked to the right hemisphere; trends and direction in sided dominance gradually followed the changes in satiety state. Our findings revealed satiety state-dependent metabolic differences between the two hypothalamic hemispheres. It is therefore concluded that, at least in male rats, the hypothalamic hemispheres control the satiety state-related functions in an asymmetric manner. |
---|---|
ISSN: | 1933-7191 1933-7205 |
DOI: | 10.1007/s43032-019-00131-3 |