A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data

This paper focuses on quantifying the uncertainty in the specific absorption rate valuesof the brain induced by the uncertain positions of the electroencephalography electrodes placed onthe patient's scalp. To avoid running a large number of simulations, an artificial neural networkarchitecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-04, Vol.17 (7), p.2586
Hauptverfasser: Cheng, Xi, Henry, Clément, Andriulli, Francesco P P, Person, Christian, Wiart, Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on quantifying the uncertainty in the specific absorption rate valuesof the brain induced by the uncertain positions of the electroencephalography electrodes placed onthe patient's scalp. To avoid running a large number of simulations, an artificial neural networkarchitecture for uncertainty quantification involving high-dimensional data is proposed in this paper.The proposed method is demonstrated to be an attractive alternative to conventional uncertaintyquantification methods because of its considerable advantage in the computational expense andspeed.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17072586