Biopesticide synergy when combining plant flavonoids and entomopathogenic baculovirus
Four crop plants known to be hosts for the lepidopteran Trichoplusia ni (soybean, green bean, cotton, and cabbage) were treated with the biopesticide AfMNPV baculovirus in a dosage response assay. Treated soybean had, on average, a 6-fold increase in virus activity compared with the other crops. Lea...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.6806, Article 6806 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four crop plants known to be hosts for the lepidopteran
Trichoplusia ni
(soybean, green bean, cotton, and cabbage) were treated with the biopesticide AfMNPV baculovirus in a dosage response assay. Treated soybean had, on average, a 6-fold increase in virus activity compared with the other crops. Leaf trichomes on soybeans were not found to be responsible for the observed increase of insecticidal activity. Three flavonoid compounds (daidzein, genistein, and kaempferol) were uniquely found only in the soybean crop, and were not detected in cotton, cabbage, or green bean plant matter. The individual flavonoid compounds did not cause
T ni
. mortality in no-virus assays when incorporated into artificial insect diet. The combination of the three flavonoid compounds at leaf level concentrations significantly increased baculovirus activity in diet incorporation assays. When the daidzein, genistein, and kaempferol were added to artificial diet, at 3.5–6.5 × leaf level concentrations, virus activity increased 1.5, 2.3, and 4.2-fold for each respective flavonoid. The soybean flavonoid compounds were found to synergistically improve baculovirus activity against
T. ni
. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-63746-6 |