Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration

The concentration of a protein is highly related to its biochemical properties, and is a key determinant for its biotechnological applications. Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) are structurally diverse macromolecules that are capable of binding to embryonic ice crystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2020-03, Vol.10 (3), p.423, Article 423
Hauptverfasser: Tsuda, Sakae, Yamauchi, Akari, Khan, N. M. -Mofiz Uddin, Arai, Tatsuya, Mahatabuddin, Sheikh, Miura, Ai, Kondo, Hidemasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concentration of a protein is highly related to its biochemical properties, and is a key determinant for its biotechnological applications. Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) are structurally diverse macromolecules that are capable of binding to embryonic ice crystals below 0 degrees C, making them useful as protectants of ice-block formation. In this study, we examined the maximal solubility of native AFP I-III and AFGP with distilled water, and evaluated concentration dependence of their ice-binding property. Approximately 400 mg/mL (AFP I), 200 mg/mL (AFP II), 100 mg/mL (AFP III), and >1800 mg/mL (AFGP) of the maximal solubility were estimated, and among them AFGP's solubility is much higher compared with that of ordinary proteins, such as serum albumin (similar to 500 mg/mL). The samples also exhibited unexpectedly high thermal hysteresis values (2-3 degrees C) at 50-200 mg/mL. Furthermore, the analysis of fluorescence-based ice plane affinity showed that AFP II binds to multiple ice planes in a concentration-dependent manner, for which an oligomerization mechanism was hypothesized. The difference of concentration dependence between AFPs and AFGPs may provide a new clue to help us understand the ice-binding function of these proteins.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom10030423