MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway

Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.6671, Article 6671
Hauptverfasser: Ishimaru, Hanako, Hosokawa, Kohei, Sugimoto, Atsuko, Tanaka, Riho, Watanabe, Tadashi, Fujimuro, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistant HSV-1 strains, new anti-HSV-1 compounds are needed. Because many viruses exploit cellular host proteases and encode their own viral proteases for survival, we investigated the inhibitory effects of a panel of protease inhibitors (TLCK, TPCK, E64, bortezomib, or MG132) on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection suppressed c-Raf-MEK1/2-ERK1/2-p90RSK signaling in host cells, which facilitated viral replication. The mechanism by which HSV-1 inhibited ERK signaling was mediated through the polyubiquitination and proteasomal degradation of Ras-guanine nucleotide-releasing factor 2 (Ras-GRF2). Importantly, the proteasome inhibitor MG132 inhibited HSV-1 replication by reversing ERK suppression in infected cells, inhibiting lytic genes (ICP5, ICP27 and UL42) expression, and overcoming the downregulation of Ras-GRF2. These results indicate that the suppression of ERK signaling via proteasomal degradation of Ras-GRF2 is necessary for HSV-1 infection and replication. Given that ERK activation by MG132 exhibits anti-HSV-1 activity, these results suggest that the proteasome inhibitor could serve as a novel therapeutic agent against HSV-1 infection.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-63438-1