Automatic lesion border selection in dermoscopy images using morphology and color features

Purpose We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer‐aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skin research and technology 2019-07, Vol.25 (4), p.544-552
Hauptverfasser: Mishra, Nabin K., Kaur, Ravneet, Kasmi, Reda, Hagerty, Jason R., LeAnder, Robert, Stanley, Ronald J., Moss, Randy H., Stoecker, William V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer‐aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions. Methods We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a “good‐enough” border basis. Morphology and color features inside and outside the automatic border are used to build the model. Results For a random forests classifier applied to an 802‐lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases. Conclusion The performance of the classifier‐based automatic skin lesion finder is found to be better than any single algorithm used in this research.
ISSN:0909-752X
1600-0846
DOI:10.1111/srt.12685