Automatic lesion border selection in dermoscopy images using morphology and color features
Purpose We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer‐aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides...
Gespeichert in:
Veröffentlicht in: | Skin research and technology 2019-07, Vol.25 (4), p.544-552 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer‐aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions.
Methods
We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a “good‐enough” border basis. Morphology and color features inside and outside the automatic border are used to build the model.
Results
For a random forests classifier applied to an 802‐lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases.
Conclusion
The performance of the classifier‐based automatic skin lesion finder is found to be better than any single algorithm used in this research. |
---|---|
ISSN: | 0909-752X 1600-0846 |
DOI: | 10.1111/srt.12685 |