MG53 Does Not Manifest the Development of Diabetes in db/db Mice

MG53 is a member of the TRIM protein family that is predominantly expressed in striated muscles and participates in cell membrane repair. Controversy exists regarding MG53's role in insulin signaling and manifestation of diabetes. We generated mice with either whole-body ablation or sustained e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2020-05, Vol.69 (5), p.1052-1064
Hauptverfasser: Wang, Qiang, Bian, Zehua, Jiang, Qiwei, Wang, Xiaoliang, Zhou, Xinyu, Park, Ki Ho, Hsueh, Willa, Whitson, Bryan A, Haggard, Erin, Li, Haichang, Chen, Ken, Cai, Chuanxi, Tan, Tao, Zhu, Hua, Ma, Jianjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MG53 is a member of the TRIM protein family that is predominantly expressed in striated muscles and participates in cell membrane repair. Controversy exists regarding MG53's role in insulin signaling and manifestation of diabetes. We generated mice with either whole-body ablation or sustained elevation of MG53 in the bloodstream in order to evaluate the physiological function of MG53 in diabetes. To quantify the amount of MG53 protein in circulation, we developed a monoclonal antibody against MG53 with high specificity. Western blot using this antibody revealed lower or no change of serum MG53 levels in mice or patients with diabetes compared with control subjects. Neither whole-body ablation of MG53 nor sustained elevation of MG53 in circulation altered insulin signaling and glucose handling in mice. Instead, mice with ablation of MG53 were more susceptible to streptozotocin-induced dysfunctional handling of glucose compared with the wild-type littermates. Alkaline-induced corneal injury demonstrated delayed healing in mice, which was restored by topical administration of recombinant human (rh)MG53. Daily intravenous administration of rhMG53 in rats at concentrations up to 10 mg/kg did not produce adverse effects on glucose handling. These findings challenge the hypothetical function of MG53 as a causative factor for the development of diabetes. Our data suggest that rhMG53 is a potentially safe and effective biologic to treat diabetic oculopathy in rodents.
ISSN:0012-1797
1939-327X
DOI:10.2337/db19-0807