Nickel-Catalyzed Three-Component Cycloadditions of Enoates, Alkynes, and Aldehydes

A method for the three-component cycloaddition of enoates, alkynes, and aldehydes has been developed. Building upon previous work by this group in which stoichiometrically generated metallacycles undergo alkylation, we report a catalytic, alkylative [3 + 2] cycloaddition. From simple starting materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2020-03, Vol.85 (5), p.2956-2965
Hauptverfasser: Jenkins, Aireal D, Robo, Michael T, Zimmerman, Paul M, Montgomery, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for the three-component cycloaddition of enoates, alkynes, and aldehydes has been developed. Building upon previous work by this group in which stoichiometrically generated metallacycles undergo alkylation, we report a catalytic, alkylative [3 + 2] cycloaddition. From simple starting materials, structurally complex cyclopentenones may be rapidly assembled. Computational investigation of the mechanism (ωB97X-D3/cc-pVTZ//ωB97X/6-31G­(d)) identified three energetically feasible pathways. Based on the relative rates of ketene formation compared to isomerization to a seven-membered metallacycle, the most likely mechanism has been determined to occur “ketene-first”, with carbocyclization prior to aldol addition. Deuterium labeling studies suggest that formation of the seven-membered metallacycle becomes possible when an α-substituted enoate is used. This observed change in selectivity is due to the increased difficulty of phenoxide elimination with the inclusion of additional steric bulk of the α-substituent. The net transformation results in a [3 + 2] cycloaddition accompanied by an alkylation of the enoate substituent.
ISSN:0022-3263
1520-6904
1520-6904
DOI:10.1021/acs.joc.9b02446