Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication

Enterovirus 71 (EV71) is an important pathogen causing death in children under 5 years old worldwide. However, the underlying pathogenesis remains unclear. This study reveals that EV71 infection in rhabdomyosarcoma (RD) and neuroblastoma (SK-N-SH) cells stimulated the autophagic process, which was d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2009-07, Vol.81 (7), p.1241-1252
Hauptverfasser: Huang, Shu-Chen, Chang, Chia-Lun, Wang, Po-Shun, Tsai, Yu, Liu, Hsiao-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enterovirus 71 (EV71) is an important pathogen causing death in children under 5 years old worldwide. However, the underlying pathogenesis remains unclear. This study reveals that EV71 infection in rhabdomyosarcoma (RD) and neuroblastoma (SK-N-SH) cells stimulated the autophagic process, which was demonstrated by an increase of punctate GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3), the level of autophagosome-bound LC3-II protein and double-membrane autophagosome formation. EV71-induced autophagy benefited EV71 replication, which was confirmed by the autophagic inducer rapamycin and the inhibitor 3-methyladenine. Signaling pathway investigation revealed that the decreased expression of phosphorylated mTOR and phosphorylated p70S6K is involved in EV71-induced autophagy in a cell-specific manner. The expression of phosphorylated extracellular signal-regulated kinase (Erk) was suppressed consistently in EV71-infected cells. However it did not participate in the autophagic response of the cell. Other signaling pathway molecules, such as Erk, PI3K/Akt, Bcl-2, BNIP3, and Beclin-1 were not affected by infection with EV71. Electron microscopy showed co-localization of autophagosome-like vesicles with either EV71-VP1 or LC3 protein in neurons of the cervical spinal cord in ICR mice infected with EV71. In conclusion, EV71 infection triggered autophagic flux and induced autophagosome formation both in vitro and in vivo. Autophagy induced by EV71 is beneficial for viral replication. Understanding the role of autophagy induced by EV71 in vitro and the formation of autophagosome-like vesicle in vivo provide new insights into the pathogenesis of EV71 infection. J. Med. Virol. 81:1241-1252, 2009.
ISSN:0146-6615
1096-9071
DOI:10.1002/jmv.21502