Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.)

Soil amendments are known to promote several plant growth parameters. In many agro-ecosystems, water scarcity and drought induced phosphorus deficiency limits crop yield significantly. Considering the climate change scenario, drought and related stress factors will be even more severe endangering th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.6432, Article 6432
Hauptverfasser: Kaya, Cengiz, Şenbayram, Mehmet, Akram, Nudrat Aisha, Ashraf, Muhammed, Alyemeni, Mohammed Nasser, Ahmad, Parvaiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil amendments are known to promote several plant growth parameters. In many agro-ecosystems, water scarcity and drought induced phosphorus deficiency limits crop yield significantly. Considering the climate change scenario, drought and related stress factors will be even more severe endangering the global food security. Therefore, two parallel field trials were conducted to examine at what extent soil amendment of leonardite and humic acid would affect drought and phosphorus tolerance of maize. The treatments were: control (C: 100% A pan and 125 kg P ha −1 ), P deficiency (phosphorus stress (PS): 62.5 kg P ha −1 ), water deficit stress (water stress (WS): 67% A pan), and PS + WS (67% A pan and 62.5 kg P ha −1 ). Three organic amendments were (i) no amendment, (ii) 625 kg S + 750 kg leonardite ha −1 and (iii) 1250 kg S + 37.5 kg humic acid ha −1 ) tested on stress treatments. Drought and P deficiency reduced plant biomass, grain yield, chlorophyll content, F v /F m , RWC and antioxidant activity (superoxide dismutase, peroxidase, and catalase), but increased electrolyte leakage and leaf H 2 O 2 in maize plants. The combined stress of drought and P deficiency decreased further related plant traits. Humic acid and leonardite enhanced leaf P and yield in maize plants under PS. A significant increase in related parameters was observed with humic acid and leonardite under WS. The largest increase in yield and plant traits in relation to humic acid and leonardite application was observed under combined stress situation. The use of sulfur-enriched amendments can be used effectively to maintain yield of maize crop in water limited calcareous soils.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-62669-6