Syncytiotrophoblast extracellular microvesicle profiles in maternal circulation for noninvasive diagnosis of preeclampsia

Preeclampsia is the most common placental pathology in pregnant females, with increased morbidity and mortality incurred on the mother and the fetus. There is a need for improved biomarkers for diagnosis and monitoring of this condition. Placental syncytiotrophoblasts at the maternal-fetal interface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.6398-6398, Article 6398
Hauptverfasser: Levine, Lisa, Habertheuer, Andreas, Ram, Chirag, Korutla, Laxminarayana, Schwartz, Nadav, Hu, Robert W., Reddy, Sanjana, Freas, Andrew, Zielinski, Patrick D., Harmon, Joey, Molugu, Sudheer Kumar, Parry, Samuel, Vallabhajosyula, Prashanth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preeclampsia is the most common placental pathology in pregnant females, with increased morbidity and mortality incurred on the mother and the fetus. There is a need for improved biomarkers for diagnosis and monitoring of this condition. Placental syncytiotrophoblasts at the maternal-fetal interface release nanoparticles, including extracellular microvesicles, into the maternal blood during pregnancy. Syncytiotrophoblast extracellular microvesicles (STEVs) are being studied for their diagnostic potential and for their potential physiologic role in preeclampsia. We hypothesized that STEV profiles in maternal circulation would be altered under conditions of preeclampsia compared to normal pregnancy. Extracellular vesicles (EVs) released by BeWo cells in vitro showed high expression of syncytin-1, but no plac1 expression, demonstrating that trophoblast cell EVs express syncytin-1 on their surface. Placental alkaline phosphatase also showed high expression on BeWo EVs, but due to concern for cross reactivity to highly prevalent isoforms of intestinal and bone alkaline phosphatase, we utilized syncytin-1 as a marker for STEVs. In vivo , syncytin-1 protein expression was confirmed in maternal plasma EVs from Control and Preeclampsia subjects by Western blot, and overall, lower expression was noted in samples from patients with preeclampsia (n = 8). By nanoparticle analysis, EV profiles from Control and Preeclampsia groups showed similar total plasma EV quantities (p = 0.313) and size distribution (p = 0.415), but STEV quantitative signal, marked by syncytin-1 specific EVs, was significantly decreased in the Preeclampsia group (p = 2.8 × 10 −11 ). Receiver operating characteristic curve demonstrated that STEV signal threshold cut-off of
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-62193-7