Nanocontainer-Based Active Systems: From Self-Healing Coatings to Thermal Energy Storage

We highlight the development of nanocontainer-based active materials started in 2006 at the Max Planck Institute of Colloids and Interfaces under the supervision of Prof. Helmuth Möhwald. The active materials encapsulated in the nanocontainers with controlled shell permeability have been first appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-07, Vol.35 (26), p.8603-8611
Hauptverfasser: Shchukina, E, Shchukin, D. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We highlight the development of nanocontainer-based active materials started in 2006 at the Max Planck Institute of Colloids and Interfaces under the supervision of Prof. Helmuth Möhwald. The active materials encapsulated in the nanocontainers with controlled shell permeability have been first applied for self-healing coatings with controlled release of the corrosion inhibitor. The nanocontainers have been added to the paint formulation matrix at 5–10 wt % concentration, which resulted in attaining a coating-autonomous self-healing ability. This research idea has attracted the attention of many scientists around the world (>1500 publications during the last 10 years) and has already been transferred to the commercialization level. The current trend in nanocontainer-based active systems is devoted to the multifunctionality of the capsules which can combine self-healing, antibacterial, thermal, and other functionalities into one host matrix. This article summarizes the previous research done in the area of nanocontainer-based active materials together with future perspectives of capsule-based materials with antifouling or thermoregulating activity.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.9b00151