Quantification of morphochemical changes during in situ enzymatic hydrolysis of individual biomass particles based on autofluorescence imaging

Enzymatic hydrolysis of biomass is an established method for producing biofuels. Lignocellulosic biomass such as corn stover is very inhomogeneous material with big variation on conversion rates between individual particles therefore leading to variable recalcitrance results. In this study, we used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biopolymers 2020-03, Vol.111 (3), p.e23347-n/a
Hauptverfasser: Kapsokalyvas, Dimitrios, Loos, Joachim, Boogers, Ilco A. L. A., Appeldoorn, Maaike M., Kabel, Mirjam A., Van Zandvoort, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymatic hydrolysis of biomass is an established method for producing biofuels. Lignocellulosic biomass such as corn stover is very inhomogeneous material with big variation on conversion rates between individual particles therefore leading to variable recalcitrance results. In this study, we used noninvasive optical microscopy techniques, such as two‐photon microscopy and fluorescence lifetime imaging microscopy, to visualize and analyze morphological and chemical changes of individual corn stover particles pretreated with sulfuric acid during hydrolysis. Morphochemical changes were interpreted based on the fluorescence properties of isolated building blocks of plant cell wall, such as cellulose, hemicellulose, and lignin. Enzymatic hydrolysis resulted in particle size reduction, side wall collapse, decrease of second harmonic signal from cellulose, redshifting of autofluorescence emission, and lifetime decrease attributed to the relative increase of lignin. Based on these observations, tracking compositional change after hydrolysis of individual particles was accomplished. The methodologies developed offer a paradigm for imaging and analyzing enzymatic hydrolysis in vitro and in situ, which could be used for screening enzymes cocktails targeting specific recalcitrant structures or investigating locally enzyme anti‐inhibitory agents.
ISSN:0006-3525
1097-0282
DOI:10.1002/bip.23347