Effects of Sulfamethoxazole and 2-Ethylhexyl-4-Methoxycinnamate on the Dissimilatory Nitrate Reduction Processes and N2O Release in Sediments in the Yarlung Zangbo River

The nitrogen pollution of rivers as a global environmental problem has received great attentions in recent years. The occurrence of emerging pollutants in high-altitude rivers will inevitably affect the dissimilatory nitrate reduction processes. In this study, sediment slurry experiments combined wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-03, Vol.17 (6), p.1822
Hauptverfasser: Xu, Huiping, Lu, Guanghua, Xue, Chenwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nitrogen pollution of rivers as a global environmental problem has received great attentions in recent years. The occurrence of emerging pollutants in high-altitude rivers will inevitably affect the dissimilatory nitrate reduction processes. In this study, sediment slurry experiments combined with 15N tracer techniques were conducted to investigate the influence of pharmaceutical and personal care products (alone and in combination) on denitrification and the anaerobic ammonium oxidation (anammox) process and the resulting N2O release in the sediments of the Yarlung Zangbo River. The results showed that the denitrification rates were inhibited by sulfamethoxazole (SMX) treatments (1–100 μg L−1) and the anammox rates decreased as the SMX concentrations increased, which may be due to the inhibitory effect of this antibiotic on nitrate reducing microbes. 2-Ethylhexyl-4-methoxycinnamate (EHMC) impacted nitrogen transformation mainly though the inhibition of the anammox processes. SMX and EHMC showed a superposition effect on the denitrification processes. The expression levels of the denitrifying functional genes nirS and nosZ were decreased and N2O release was stimulated due to the presence of SMX and/or EHMC in the sediments. To the best of our knowledge, this study is the first to report the effects of EHMC and its mixtures on the dissimilatory nitrate reduction processes and N2O releases in river sediments. Our results indicated that the widespread occurrence of emerging pollutants in high-altitude rivers may disturb the nitrogen transformation processes and increase the pressure of global warming.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17061822