Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing
Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of...
Gespeichert in:
Veröffentlicht in: | Materials 2020-03, Vol.13 (6), p.1408 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1408 |
container_title | Materials |
container_volume | 13 |
creator | Prucnal, Slawomir Żuk, Jerzy Hübner, René Duan, Juanmei Wang, Mao Pyszniak, Krzysztof Drozdziel, Andrzej Turek, Marcin Zhou, Shengqiang |
description | Controlled doping with an effective carrier concentration higher than 10
cm
is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm
and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process. |
doi_str_mv | 10.3390/ma13061408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7143048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382894440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoKrUXP4AEvIhQzb-myUWQ2tZCwYs9h2Q320Z2k3WzFfrtTdlaq3PJhPnxeDMPgGuMHiiV6LHSmCKOGRIn4BJLyQdYMnZ61F-AfowfKBWlWBB5Di4oIYxJQi_BclLarG2Ch-PgM-vbRrcu_Rauci10Hs4sfAm1zaHZwnkazKu61L7tKO1zOC11XMOFrmr47L3VpfOrK3BW6DLa_v7tgeV08j5-HSzeZvPx82KQMcTbgUUsyyzVEhtjKMFFXuAhMgJzbMgo51wLxrGWxBhRWCwzixAhiAy1zTkdGtoDT51uvTGVzTv_paobV-lmq4J26u_Eu7VahS81wowiJpLA3V6gCZ8bG1tVuZjZMq1owyYqQgUnAqVTJfT2H_oRNo1P6-0oItKlGUrUfUdlTYixscXBDEZqF5j6DSzBN8f2D-hPPPQbzTGPzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382894440</pqid></control><display><type>article</type><title>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Prucnal, Slawomir ; Żuk, Jerzy ; Hübner, René ; Duan, Juanmei ; Wang, Mao ; Pyszniak, Krzysztof ; Drozdziel, Andrzej ; Turek, Marcin ; Zhou, Shengqiang</creator><creatorcontrib>Prucnal, Slawomir ; Żuk, Jerzy ; Hübner, René ; Duan, Juanmei ; Wang, Mao ; Pyszniak, Krzysztof ; Drozdziel, Andrzej ; Turek, Marcin ; Zhou, Shengqiang</creatorcontrib><description>Controlled doping with an effective carrier concentration higher than 10
cm
is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm
and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13061408</identifier><identifier>PMID: 32244923</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Annealing ; Carrier density ; Contact resistance ; Doping ; Equilibrium ; Flash lamps ; Fluence ; Germanium ; High temperature ; Ion flux ; Ion implantation ; Lasers ; Molecular beam epitaxy ; Recrystallization ; Thickness</subject><ispartof>Materials, 2020-03, Vol.13 (6), p.1408</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</citedby><cites>FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</cites><orcidid>0000-0002-5200-6928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143048/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143048/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32244923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prucnal, Slawomir</creatorcontrib><creatorcontrib>Żuk, Jerzy</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Duan, Juanmei</creatorcontrib><creatorcontrib>Wang, Mao</creatorcontrib><creatorcontrib>Pyszniak, Krzysztof</creatorcontrib><creatorcontrib>Drozdziel, Andrzej</creatorcontrib><creatorcontrib>Turek, Marcin</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><title>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Controlled doping with an effective carrier concentration higher than 10
cm
is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm
and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.</description><subject>Annealing</subject><subject>Carrier density</subject><subject>Contact resistance</subject><subject>Doping</subject><subject>Equilibrium</subject><subject>Flash lamps</subject><subject>Fluence</subject><subject>Germanium</subject><subject>High temperature</subject><subject>Ion flux</subject><subject>Ion implantation</subject><subject>Lasers</subject><subject>Molecular beam epitaxy</subject><subject>Recrystallization</subject><subject>Thickness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9LAzEQxYMoKrUXP4AEvIhQzb-myUWQ2tZCwYs9h2Q320Z2k3WzFfrtTdlaq3PJhPnxeDMPgGuMHiiV6LHSmCKOGRIn4BJLyQdYMnZ61F-AfowfKBWlWBB5Di4oIYxJQi_BclLarG2Ch-PgM-vbRrcu_Rauci10Hs4sfAm1zaHZwnkazKu61L7tKO1zOC11XMOFrmr47L3VpfOrK3BW6DLa_v7tgeV08j5-HSzeZvPx82KQMcTbgUUsyyzVEhtjKMFFXuAhMgJzbMgo51wLxrGWxBhRWCwzixAhiAy1zTkdGtoDT51uvTGVzTv_paobV-lmq4J26u_Eu7VahS81wowiJpLA3V6gCZ8bG1tVuZjZMq1owyYqQgUnAqVTJfT2H_oRNo1P6-0oItKlGUrUfUdlTYixscXBDEZqF5j6DSzBN8f2D-hPPPQbzTGPzg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Prucnal, Slawomir</creator><creator>Żuk, Jerzy</creator><creator>Hübner, René</creator><creator>Duan, Juanmei</creator><creator>Wang, Mao</creator><creator>Pyszniak, Krzysztof</creator><creator>Drozdziel, Andrzej</creator><creator>Turek, Marcin</creator><creator>Zhou, Shengqiang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5200-6928</orcidid></search><sort><creationdate>20200320</creationdate><title>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</title><author>Prucnal, Slawomir ; Żuk, Jerzy ; Hübner, René ; Duan, Juanmei ; Wang, Mao ; Pyszniak, Krzysztof ; Drozdziel, Andrzej ; Turek, Marcin ; Zhou, Shengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annealing</topic><topic>Carrier density</topic><topic>Contact resistance</topic><topic>Doping</topic><topic>Equilibrium</topic><topic>Flash lamps</topic><topic>Fluence</topic><topic>Germanium</topic><topic>High temperature</topic><topic>Ion flux</topic><topic>Ion implantation</topic><topic>Lasers</topic><topic>Molecular beam epitaxy</topic><topic>Recrystallization</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prucnal, Slawomir</creatorcontrib><creatorcontrib>Żuk, Jerzy</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Duan, Juanmei</creatorcontrib><creatorcontrib>Wang, Mao</creatorcontrib><creatorcontrib>Pyszniak, Krzysztof</creatorcontrib><creatorcontrib>Drozdziel, Andrzej</creatorcontrib><creatorcontrib>Turek, Marcin</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prucnal, Slawomir</au><au>Żuk, Jerzy</au><au>Hübner, René</au><au>Duan, Juanmei</au><au>Wang, Mao</au><au>Pyszniak, Krzysztof</au><au>Drozdziel, Andrzej</au><au>Turek, Marcin</au><au>Zhou, Shengqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>13</volume><issue>6</issue><spage>1408</spage><pages>1408-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Controlled doping with an effective carrier concentration higher than 10
cm
is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm
and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32244923</pmid><doi>10.3390/ma13061408</doi><orcidid>https://orcid.org/0000-0002-5200-6928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-03, Vol.13 (6), p.1408 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7143048 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Annealing Carrier density Contact resistance Doping Equilibrium Flash lamps Fluence Germanium High temperature Ion flux Ion implantation Lasers Molecular beam epitaxy Recrystallization Thickness |
title | Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Concentration%20Limit%20in%20Ge%20Doped%20by%20Ion%20Implantation%20and%20Flash%20Lamp%20Annealing&rft.jtitle=Materials&rft.au=Prucnal,%20Slawomir&rft.date=2020-03-20&rft.volume=13&rft.issue=6&rft.spage=1408&rft.pages=1408-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13061408&rft_dat=%3Cproquest_pubme%3E2382894440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382894440&rft_id=info:pmid/32244923&rfr_iscdi=true |