Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing

Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-03, Vol.13 (6), p.1408
Hauptverfasser: Prucnal, Slawomir, Żuk, Jerzy, Hübner, René, Duan, Juanmei, Wang, Mao, Pyszniak, Krzysztof, Drozdziel, Andrzej, Turek, Marcin, Zhou, Shengqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1408
container_title Materials
container_volume 13
creator Prucnal, Slawomir
Żuk, Jerzy
Hübner, René
Duan, Juanmei
Wang, Mao
Pyszniak, Krzysztof
Drozdziel, Andrzej
Turek, Marcin
Zhou, Shengqiang
description Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.
doi_str_mv 10.3390/ma13061408
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7143048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382894440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoKrUXP4AEvIhQzb-myUWQ2tZCwYs9h2Q320Z2k3WzFfrtTdlaq3PJhPnxeDMPgGuMHiiV6LHSmCKOGRIn4BJLyQdYMnZ61F-AfowfKBWlWBB5Di4oIYxJQi_BclLarG2Ch-PgM-vbRrcu_Rauci10Hs4sfAm1zaHZwnkazKu61L7tKO1zOC11XMOFrmr47L3VpfOrK3BW6DLa_v7tgeV08j5-HSzeZvPx82KQMcTbgUUsyyzVEhtjKMFFXuAhMgJzbMgo51wLxrGWxBhRWCwzixAhiAy1zTkdGtoDT51uvTGVzTv_paobV-lmq4J26u_Eu7VahS81wowiJpLA3V6gCZ8bG1tVuZjZMq1owyYqQgUnAqVTJfT2H_oRNo1P6-0oItKlGUrUfUdlTYixscXBDEZqF5j6DSzBN8f2D-hPPPQbzTGPzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382894440</pqid></control><display><type>article</type><title>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Prucnal, Slawomir ; Żuk, Jerzy ; Hübner, René ; Duan, Juanmei ; Wang, Mao ; Pyszniak, Krzysztof ; Drozdziel, Andrzej ; Turek, Marcin ; Zhou, Shengqiang</creator><creatorcontrib>Prucnal, Slawomir ; Żuk, Jerzy ; Hübner, René ; Duan, Juanmei ; Wang, Mao ; Pyszniak, Krzysztof ; Drozdziel, Andrzej ; Turek, Marcin ; Zhou, Shengqiang</creatorcontrib><description>Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13061408</identifier><identifier>PMID: 32244923</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Annealing ; Carrier density ; Contact resistance ; Doping ; Equilibrium ; Flash lamps ; Fluence ; Germanium ; High temperature ; Ion flux ; Ion implantation ; Lasers ; Molecular beam epitaxy ; Recrystallization ; Thickness</subject><ispartof>Materials, 2020-03, Vol.13 (6), p.1408</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</citedby><cites>FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</cites><orcidid>0000-0002-5200-6928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143048/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143048/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32244923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prucnal, Slawomir</creatorcontrib><creatorcontrib>Żuk, Jerzy</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Duan, Juanmei</creatorcontrib><creatorcontrib>Wang, Mao</creatorcontrib><creatorcontrib>Pyszniak, Krzysztof</creatorcontrib><creatorcontrib>Drozdziel, Andrzej</creatorcontrib><creatorcontrib>Turek, Marcin</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><title>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.</description><subject>Annealing</subject><subject>Carrier density</subject><subject>Contact resistance</subject><subject>Doping</subject><subject>Equilibrium</subject><subject>Flash lamps</subject><subject>Fluence</subject><subject>Germanium</subject><subject>High temperature</subject><subject>Ion flux</subject><subject>Ion implantation</subject><subject>Lasers</subject><subject>Molecular beam epitaxy</subject><subject>Recrystallization</subject><subject>Thickness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9LAzEQxYMoKrUXP4AEvIhQzb-myUWQ2tZCwYs9h2Q320Z2k3WzFfrtTdlaq3PJhPnxeDMPgGuMHiiV6LHSmCKOGRIn4BJLyQdYMnZ61F-AfowfKBWlWBB5Di4oIYxJQi_BclLarG2Ch-PgM-vbRrcu_Rauci10Hs4sfAm1zaHZwnkazKu61L7tKO1zOC11XMOFrmr47L3VpfOrK3BW6DLa_v7tgeV08j5-HSzeZvPx82KQMcTbgUUsyyzVEhtjKMFFXuAhMgJzbMgo51wLxrGWxBhRWCwzixAhiAy1zTkdGtoDT51uvTGVzTv_paobV-lmq4J26u_Eu7VahS81wowiJpLA3V6gCZ8bG1tVuZjZMq1owyYqQgUnAqVTJfT2H_oRNo1P6-0oItKlGUrUfUdlTYixscXBDEZqF5j6DSzBN8f2D-hPPPQbzTGPzg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Prucnal, Slawomir</creator><creator>Żuk, Jerzy</creator><creator>Hübner, René</creator><creator>Duan, Juanmei</creator><creator>Wang, Mao</creator><creator>Pyszniak, Krzysztof</creator><creator>Drozdziel, Andrzej</creator><creator>Turek, Marcin</creator><creator>Zhou, Shengqiang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5200-6928</orcidid></search><sort><creationdate>20200320</creationdate><title>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</title><author>Prucnal, Slawomir ; Żuk, Jerzy ; Hübner, René ; Duan, Juanmei ; Wang, Mao ; Pyszniak, Krzysztof ; Drozdziel, Andrzej ; Turek, Marcin ; Zhou, Shengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-e04cce3a91bbb321fdf150b8161b27d66a8461a92bb8fe19ce0022025aed635b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annealing</topic><topic>Carrier density</topic><topic>Contact resistance</topic><topic>Doping</topic><topic>Equilibrium</topic><topic>Flash lamps</topic><topic>Fluence</topic><topic>Germanium</topic><topic>High temperature</topic><topic>Ion flux</topic><topic>Ion implantation</topic><topic>Lasers</topic><topic>Molecular beam epitaxy</topic><topic>Recrystallization</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prucnal, Slawomir</creatorcontrib><creatorcontrib>Żuk, Jerzy</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Duan, Juanmei</creatorcontrib><creatorcontrib>Wang, Mao</creatorcontrib><creatorcontrib>Pyszniak, Krzysztof</creatorcontrib><creatorcontrib>Drozdziel, Andrzej</creatorcontrib><creatorcontrib>Turek, Marcin</creatorcontrib><creatorcontrib>Zhou, Shengqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prucnal, Slawomir</au><au>Żuk, Jerzy</au><au>Hübner, René</au><au>Duan, Juanmei</au><au>Wang, Mao</au><au>Pyszniak, Krzysztof</au><au>Drozdziel, Andrzej</au><au>Turek, Marcin</au><au>Zhou, Shengqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>13</volume><issue>6</issue><spage>1408</spage><pages>1408-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32244923</pmid><doi>10.3390/ma13061408</doi><orcidid>https://orcid.org/0000-0002-5200-6928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-03, Vol.13 (6), p.1408
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7143048
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Annealing
Carrier density
Contact resistance
Doping
Equilibrium
Flash lamps
Fluence
Germanium
High temperature
Ion flux
Ion implantation
Lasers
Molecular beam epitaxy
Recrystallization
Thickness
title Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Concentration%20Limit%20in%20Ge%20Doped%20by%20Ion%20Implantation%20and%20Flash%20Lamp%20Annealing&rft.jtitle=Materials&rft.au=Prucnal,%20Slawomir&rft.date=2020-03-20&rft.volume=13&rft.issue=6&rft.spage=1408&rft.pages=1408-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13061408&rft_dat=%3Cproquest_pubme%3E2382894440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382894440&rft_id=info:pmid/32244923&rfr_iscdi=true