Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing
Controlled doping with an effective carrier concentration higher than 10 cm is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of...
Gespeichert in:
Veröffentlicht in: | Materials 2020-03, Vol.13 (6), p.1408 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlled doping with an effective carrier concentration higher than 10
cm
is a key challenge for the full integration of Ge into silicon-based technology. Such a highly doped layer of both p- and n type is needed to provide ohmic contacts with low specific resistance. We have studied the effect of ion implantation parameters i.e., ion energy, fluence, ion type, and protective layer on the effective concentration of electrons. We have shown that the maximum electron concentration increases as the thickness of the doping layer decreases. The degradation of the implanted Ge surface can be minimized by performing ion implantation at temperatures that are below -100 °C with ion flux less than 60 nAcm
and maximum ion energy less than 120 keV. The implanted layers are flash-lamp annealed for 20 ms in order to inhibit the diffusion of the implanted ions during the recrystallization process. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13061408 |