Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated Via DC-PEO Process

The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-03, Vol.13 (6), p.1295
Hauptverfasser: Rokosz, Krzysztof, Hryniewicz, Tadeusz, Kacalak, Wojciech, Tandecka, Katarzyna, Raaen, Steinar, Gaiaschi, Sofia, Chapon, Patrick, Malorny, Winfried, Matýsek, Dalibor, Pietrzak, Kornel, Dudek, Łukasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter , which lies in the range 9.72 to 45.18 μm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu and Cu into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu P O , and Cu (PO ) ) and titanium (TiO -anatase, TiO , TiP O , and Ti O ) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13061295