Picoscale structural insight into superconductivity of monolayer FeSe/SrTiO3
Remarkable enhancement of the superconducting transition temperature (T c) has been observed for monolayer (ML) FeSe films grown on SrTiO3 substrates. The atomic-scale structure of the FeSe/SrTiO3 interface is an important determinant of both the magnetic and interfacial electron-phonon interactions...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-04, Vol.6 (15), p.eaay4517 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Remarkable enhancement of the superconducting transition temperature (T c) has been observed for monolayer (ML) FeSe films grown on SrTiO3 substrates. The atomic-scale structure of the FeSe/SrTiO3 interface is an important determinant of both the magnetic and interfacial electron-phonon interactions and is a key ingredient to understanding its high-T c superconductivity. We resolve the atomic-scale structure of the FeSe/SrTiO3 interface through a complementary analysis of scanning transmission electron microscopy and in situ surface x-ray diffraction. We find that the interface is more strongly bonded for a particular registration, which leads to a coherently strained ML. We also determine structural parameters, such as the distance between ML FeSe and the oxide, Se─Fe─Se bond angles, layer-resolved distances between Fe─Se, and registry of the FeSe lattice relative to the oxide. This picoscale structure determination provides an explicit structural framework and constraint for theoretical approaches addressing the high-T c mechanism in FeSe/SrTiO3.Remarkable enhancement of the superconducting transition temperature (T c) has been observed for monolayer (ML) FeSe films grown on SrTiO3 substrates. The atomic-scale structure of the FeSe/SrTiO3 interface is an important determinant of both the magnetic and interfacial electron-phonon interactions and is a key ingredient to understanding its high-T c superconductivity. We resolve the atomic-scale structure of the FeSe/SrTiO3 interface through a complementary analysis of scanning transmission electron microscopy and in situ surface x-ray diffraction. We find that the interface is more strongly bonded for a particular registration, which leads to a coherently strained ML. We also determine structural parameters, such as the distance between ML FeSe and the oxide, Se─Fe─Se bond angles, layer-resolved distances between Fe─Se, and registry of the FeSe lattice relative to the oxide. This picoscale structure determination provides an explicit structural framework and constraint for theoretical approaches addressing the high-T c mechanism in FeSe/SrTiO3. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aay4517 |