MiR-22 suppresses the growth and metastasis of bladder cancer cells by targeting E2F3

Bladder cancer is a common, serious disease worldwide. MicroRNAs (miRNAs) have been reported to participate in the development and progression in many cancers, including bladder cancer. However, the exact roles of miR-22 in bladder cancer process and its underlying mechanism remain largely unknown....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of clinical and experimental pathology 2020-01, Vol.13 (3), p.587-596
Hauptverfasser: Guo, Junsheng, Zhang, Jian, Yang, Tianxiao, Zhang, Wei, Liu, Mingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bladder cancer is a common, serious disease worldwide. MicroRNAs (miRNAs) have been reported to participate in the development and progression in many cancers, including bladder cancer. However, the exact roles of miR-22 in bladder cancer process and its underlying mechanism remain largely unknown. The expression levels of miR-22 and E2F3 were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was used to detect the protein levels of E2F3, E-cadherin, N-cadherin, and Vimentin in bladder cancer cells. Cell viability, proliferation, migration, and invasion were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay, colony formation assay, and transwell assay, respectively. The potential binding sites between miR-22 and E2F3 were predicted by TargetScan and verified by luciferase report assay. The expression of miR-22 was downregulated and E2F3 expression was upregulated in bladder cancer tissues and cells. Overexpression of miR-22 or E2F3 knockdown inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in bladder cancer cells. In addition, E2F3 was a direct target of miR-22 and its knockdown attenuated the promotion of cell proliferation, migration, invasion, and EMT induced by miR-22 inhibitor in bladder cancer cells. In conclusion, miR-22 suppressed cell proliferation, migration, invasion, and EMT in bladder cancer cells by regulating E2F3 expression, providing a novel avenue for treatment of bladder cancer.
ISSN:1936-2625