Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture
Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order Nidovirales. So far antivirals are ha...
Gespeichert in:
Veröffentlicht in: | Antiviral research 2007-10, Vol.76 (1), p.21-29 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order
Nidovirales. So far antivirals are hardly available to combat infections with viruses of this order. Therefore, various antiviral strategies to counter nidoviral infections are under evaluation. Lectins, which bind to N-linked oligosaccharide elements of enveloped viruses, can be considered as a conceptionally new class of virus inhibitors. These agents were recently evaluated for their antiviral activity towards a variety of enveloped viruses and were shown in most cases to inhibit virus infection at low concentrations. However, limited knowledge is available for their efficacy towards nidoviruses. In this article the application of the plant lectins
Hippeastrum hybrid agglutinin (HHA),
Galanthus nivalis agglutinin (GNA),
Cymbidium sp. agglutinin (CA) and
Urtica dioica agglutinin (UDA) as well as non-plant derived pradimicin-A (PRM-A) and cyanovirin-N (CV-N) as potential antiviral agents was evaluated. Three antiviral tests were compared based on different evaluation principles: cell viability (MTT-based colorimetric assay), number of infected cells (immunoperoxidase assay) and amount of viral protein expression (luciferase-based assay). The presence of carbohydrate-binding agents strongly inhibited coronaviruses (transmissible gastroenteritis virus, infectious bronchitis virus, feline coronaviruses serotypes I and II, mouse hepatitis virus), arteriviruses (equine arteritis virus and porcine respiratory and reproductive syndrome virus) and torovirus (equine Berne virus). Remarkably, serotype II feline coronaviruses and arteriviruses were not inhibited by PRM-A, in contrast to the other viruses tested. |
---|---|
ISSN: | 0166-3542 1872-9096 |
DOI: | 10.1016/j.antiviral.2007.04.003 |