An Optical Surface Applicator for Intraoperative Photodynamic Therapy
Background and Objectives Intraoperative photodynamic therapy (IO‐PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize...
Gespeichert in:
Veröffentlicht in: | Lasers in surgery and medicine 2020-07, Vol.52 (6), p.523-529 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 6 |
container_start_page | 523 |
container_title | Lasers in surgery and medicine |
container_volume | 52 |
creator | Chamberlain, Sarah Bellnier, David Yendamuri, Sai Lindenmann, Joerg Demmy, Todd Nwogu, Chukwumere Ramer, Max Tworek, Larry Oakley, Emily Mallory, Matthew Carlsen, Lindsey Sexton, Sandra Curtin, Leslie Shafirstein, Gal |
description | Background and Objectives
Intraoperative photodynamic therapy (IO‐PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO‐PDT.
Study Design/Materials and Methods
An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue‐mimicking optical phantoms by measurements from a multi‐channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665‐nm laser light to activate 2‐(1′‐hexyloxyethyl) pyropheophorbide‐a (HPPH) in the thoracic cavity of adult swine.
Results
At the OSA surface, the irradiance distribution was non‐uniform, ranging from 128 to 346 mW/cm2. However, in the tissue‐mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39–153, 33–87, and 12–28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine.
Conclusions
The OSA can provide predictable light irradiances for administering a well‐defined and potentially effective therapeutic light in IO‐PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/lsm.23168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7131890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301889285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-2d9327a02bd08425e4a7eb2522bc38c932659f5f07a402bf52733e6fc3e144f3</originalsourceid><addsrcrecordid>eNp1kU1LAzEURYMoWj8W_gEZcKOL6svHdJKNUErVQqVCuw9pmtiRmcmYzFT6702tFhVchIT3DocbLkLnGG4wALktQnlDKO7xPdTBIHpdgQHvow7g-OYgyBE6DuEVACiB7BAdUZzyjGLWQcN-lUzqJteqSKatt0qbpF_XRRw0zic2nlHVeOVq41WTr0zyvHSNW6wrVeY6mS3juF6fogOrimDOvu4TNLsfzgaP3fHkYTToj7uaMcq7ZCEoyRSQ-QI4I6lhKjNzkhIy15TruOylwqYWMsUiZFOSUWp6VlODGbP0BN1ttXU7L81Cm02yQtY-L5VfS6dy-XtT5Uv54lYywxRzAVFw9SXw7q01oZFlHrQpClUZ1wZJKGDOBeFpRC__oK-u9VX8nSSMgGAC-EZ4vaW0dyF4Y3dhMMhNNzJ2Iz-7iezFz_Q78ruMCNxugfe8MOv_TXI8fdoqPwBmI5hG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420949080</pqid></control><display><type>article</type><title>An Optical Surface Applicator for Intraoperative Photodynamic Therapy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chamberlain, Sarah ; Bellnier, David ; Yendamuri, Sai ; Lindenmann, Joerg ; Demmy, Todd ; Nwogu, Chukwumere ; Ramer, Max ; Tworek, Larry ; Oakley, Emily ; Mallory, Matthew ; Carlsen, Lindsey ; Sexton, Sandra ; Curtin, Leslie ; Shafirstein, Gal</creator><creatorcontrib>Chamberlain, Sarah ; Bellnier, David ; Yendamuri, Sai ; Lindenmann, Joerg ; Demmy, Todd ; Nwogu, Chukwumere ; Ramer, Max ; Tworek, Larry ; Oakley, Emily ; Mallory, Matthew ; Carlsen, Lindsey ; Sexton, Sandra ; Curtin, Leslie ; Shafirstein, Gal</creatorcontrib><description>Background and Objectives
Intraoperative photodynamic therapy (IO‐PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO‐PDT.
Study Design/Materials and Methods
An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue‐mimicking optical phantoms by measurements from a multi‐channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665‐nm laser light to activate 2‐(1′‐hexyloxyethyl) pyropheophorbide‐a (HPPH) in the thoracic cavity of adult swine.
Results
At the OSA surface, the irradiance distribution was non‐uniform, ranging from 128 to 346 mW/cm2. However, in the tissue‐mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39–153, 33–87, and 12–28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine.
Conclusions
The OSA can provide predictable light irradiances for administering a well‐defined and potentially effective therapeutic light in IO‐PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.</description><identifier>ISSN: 0196-8092</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/lsm.23168</identifier><identifier>PMID: 31587314</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Dosimeters ; Dosimetry ; Feasibility studies ; Holes ; intraoperative photodynamic therapy ; Irradiance ; Lasers ; Light ; Light sources ; Livestock ; Lung cancer ; Mimicry ; non‐small‐cell lung cancer ; Optical fibers ; optical tissue‐mimicking phantom ; Performance tests ; Photodynamic therapy ; Silicones ; Swine ; Thorax ; Tissues</subject><ispartof>Lasers in surgery and medicine, 2020-07, Vol.52 (6), p.523-529</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-2d9327a02bd08425e4a7eb2522bc38c932659f5f07a402bf52733e6fc3e144f3</citedby><cites>FETCH-LOGICAL-c4438-2d9327a02bd08425e4a7eb2522bc38c932659f5f07a402bf52733e6fc3e144f3</cites><orcidid>0000-0002-4960-7415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flsm.23168$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flsm.23168$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31587314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chamberlain, Sarah</creatorcontrib><creatorcontrib>Bellnier, David</creatorcontrib><creatorcontrib>Yendamuri, Sai</creatorcontrib><creatorcontrib>Lindenmann, Joerg</creatorcontrib><creatorcontrib>Demmy, Todd</creatorcontrib><creatorcontrib>Nwogu, Chukwumere</creatorcontrib><creatorcontrib>Ramer, Max</creatorcontrib><creatorcontrib>Tworek, Larry</creatorcontrib><creatorcontrib>Oakley, Emily</creatorcontrib><creatorcontrib>Mallory, Matthew</creatorcontrib><creatorcontrib>Carlsen, Lindsey</creatorcontrib><creatorcontrib>Sexton, Sandra</creatorcontrib><creatorcontrib>Curtin, Leslie</creatorcontrib><creatorcontrib>Shafirstein, Gal</creatorcontrib><title>An Optical Surface Applicator for Intraoperative Photodynamic Therapy</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg Med</addtitle><description>Background and Objectives
Intraoperative photodynamic therapy (IO‐PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO‐PDT.
Study Design/Materials and Methods
An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue‐mimicking optical phantoms by measurements from a multi‐channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665‐nm laser light to activate 2‐(1′‐hexyloxyethyl) pyropheophorbide‐a (HPPH) in the thoracic cavity of adult swine.
Results
At the OSA surface, the irradiance distribution was non‐uniform, ranging from 128 to 346 mW/cm2. However, in the tissue‐mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39–153, 33–87, and 12–28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine.
Conclusions
The OSA can provide predictable light irradiances for administering a well‐defined and potentially effective therapeutic light in IO‐PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.</description><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Feasibility studies</subject><subject>Holes</subject><subject>intraoperative photodynamic therapy</subject><subject>Irradiance</subject><subject>Lasers</subject><subject>Light</subject><subject>Light sources</subject><subject>Livestock</subject><subject>Lung cancer</subject><subject>Mimicry</subject><subject>non‐small‐cell lung cancer</subject><subject>Optical fibers</subject><subject>optical tissue‐mimicking phantom</subject><subject>Performance tests</subject><subject>Photodynamic therapy</subject><subject>Silicones</subject><subject>Swine</subject><subject>Thorax</subject><subject>Tissues</subject><issn>0196-8092</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEURYMoWj8W_gEZcKOL6svHdJKNUErVQqVCuw9pmtiRmcmYzFT6702tFhVchIT3DocbLkLnGG4wALktQnlDKO7xPdTBIHpdgQHvow7g-OYgyBE6DuEVACiB7BAdUZzyjGLWQcN-lUzqJteqSKatt0qbpF_XRRw0zic2nlHVeOVq41WTr0zyvHSNW6wrVeY6mS3juF6fogOrimDOvu4TNLsfzgaP3fHkYTToj7uaMcq7ZCEoyRSQ-QI4I6lhKjNzkhIy15TruOylwqYWMsUiZFOSUWp6VlODGbP0BN1ttXU7L81Cm02yQtY-L5VfS6dy-XtT5Uv54lYywxRzAVFw9SXw7q01oZFlHrQpClUZ1wZJKGDOBeFpRC__oK-u9VX8nSSMgGAC-EZ4vaW0dyF4Y3dhMMhNNzJ2Iz-7iezFz_Q78ruMCNxugfe8MOv_TXI8fdoqPwBmI5hG</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chamberlain, Sarah</creator><creator>Bellnier, David</creator><creator>Yendamuri, Sai</creator><creator>Lindenmann, Joerg</creator><creator>Demmy, Todd</creator><creator>Nwogu, Chukwumere</creator><creator>Ramer, Max</creator><creator>Tworek, Larry</creator><creator>Oakley, Emily</creator><creator>Mallory, Matthew</creator><creator>Carlsen, Lindsey</creator><creator>Sexton, Sandra</creator><creator>Curtin, Leslie</creator><creator>Shafirstein, Gal</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4960-7415</orcidid></search><sort><creationdate>20200701</creationdate><title>An Optical Surface Applicator for Intraoperative Photodynamic Therapy</title><author>Chamberlain, Sarah ; Bellnier, David ; Yendamuri, Sai ; Lindenmann, Joerg ; Demmy, Todd ; Nwogu, Chukwumere ; Ramer, Max ; Tworek, Larry ; Oakley, Emily ; Mallory, Matthew ; Carlsen, Lindsey ; Sexton, Sandra ; Curtin, Leslie ; Shafirstein, Gal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-2d9327a02bd08425e4a7eb2522bc38c932659f5f07a402bf52733e6fc3e144f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Feasibility studies</topic><topic>Holes</topic><topic>intraoperative photodynamic therapy</topic><topic>Irradiance</topic><topic>Lasers</topic><topic>Light</topic><topic>Light sources</topic><topic>Livestock</topic><topic>Lung cancer</topic><topic>Mimicry</topic><topic>non‐small‐cell lung cancer</topic><topic>Optical fibers</topic><topic>optical tissue‐mimicking phantom</topic><topic>Performance tests</topic><topic>Photodynamic therapy</topic><topic>Silicones</topic><topic>Swine</topic><topic>Thorax</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamberlain, Sarah</creatorcontrib><creatorcontrib>Bellnier, David</creatorcontrib><creatorcontrib>Yendamuri, Sai</creatorcontrib><creatorcontrib>Lindenmann, Joerg</creatorcontrib><creatorcontrib>Demmy, Todd</creatorcontrib><creatorcontrib>Nwogu, Chukwumere</creatorcontrib><creatorcontrib>Ramer, Max</creatorcontrib><creatorcontrib>Tworek, Larry</creatorcontrib><creatorcontrib>Oakley, Emily</creatorcontrib><creatorcontrib>Mallory, Matthew</creatorcontrib><creatorcontrib>Carlsen, Lindsey</creatorcontrib><creatorcontrib>Sexton, Sandra</creatorcontrib><creatorcontrib>Curtin, Leslie</creatorcontrib><creatorcontrib>Shafirstein, Gal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamberlain, Sarah</au><au>Bellnier, David</au><au>Yendamuri, Sai</au><au>Lindenmann, Joerg</au><au>Demmy, Todd</au><au>Nwogu, Chukwumere</au><au>Ramer, Max</au><au>Tworek, Larry</au><au>Oakley, Emily</au><au>Mallory, Matthew</au><au>Carlsen, Lindsey</au><au>Sexton, Sandra</au><au>Curtin, Leslie</au><au>Shafirstein, Gal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optical Surface Applicator for Intraoperative Photodynamic Therapy</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg Med</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>52</volume><issue>6</issue><spage>523</spage><epage>529</epage><pages>523-529</pages><issn>0196-8092</issn><eissn>1096-9101</eissn><abstract>Background and Objectives
Intraoperative photodynamic therapy (IO‐PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO‐PDT.
Study Design/Materials and Methods
An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue‐mimicking optical phantoms by measurements from a multi‐channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665‐nm laser light to activate 2‐(1′‐hexyloxyethyl) pyropheophorbide‐a (HPPH) in the thoracic cavity of adult swine.
Results
At the OSA surface, the irradiance distribution was non‐uniform, ranging from 128 to 346 mW/cm2. However, in the tissue‐mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39–153, 33–87, and 12–28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine.
Conclusions
The OSA can provide predictable light irradiances for administering a well‐defined and potentially effective therapeutic light in IO‐PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31587314</pmid><doi>10.1002/lsm.23168</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4960-7415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8092 |
ispartof | Lasers in surgery and medicine, 2020-07, Vol.52 (6), p.523-529 |
issn | 0196-8092 1096-9101 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7131890 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Dosimeters Dosimetry Feasibility studies Holes intraoperative photodynamic therapy Irradiance Lasers Light Light sources Livestock Lung cancer Mimicry non‐small‐cell lung cancer Optical fibers optical tissue‐mimicking phantom Performance tests Photodynamic therapy Silicones Swine Thorax Tissues |
title | An Optical Surface Applicator for Intraoperative Photodynamic Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optical%20Surface%20Applicator%20for%20Intraoperative%20Photodynamic%20Therapy&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Chamberlain,%20Sarah&rft.date=2020-07-01&rft.volume=52&rft.issue=6&rft.spage=523&rft.epage=529&rft.pages=523-529&rft.issn=0196-8092&rft.eissn=1096-9101&rft_id=info:doi/10.1002/lsm.23168&rft_dat=%3Cproquest_pubme%3E2301889285%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420949080&rft_id=info:pmid/31587314&rfr_iscdi=true |